• Title/Summary/Keyword: organic metal catalysts

Search Result 76, Processing Time 0.023 seconds

Oxidation characterization of VOCs(volatile organic compounds) over pt and ir supported catalysts (Pt와 Ir을 담지한 촉매에 의한 휘발성유기화합물들의 산화특성)

  • Kim, Moon-Chan;Yoo, Myong-Suk
    • Analytical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.130-138
    • /
    • 2005
  • Volatile organic compounds (VOCs) have been recognized as major contributor to air pollution. Catalytic oxidation in VOCs can give high efficiency at low temperature. In this study, monometallic Pt, Ir and bimetallic Pt-Ir were supported to $TiO_2$. Xylene, toluene and methyl ethyl ketone (MEK) were used as reactants. The monometallic or bimetallic catalysts were prepared by the excess wetness impregnation method and characterized by XRD, XPS and TEM analysis. Result reveal that Pt catalyst has higher conversion than Ir catalyst and Pt-Ir bimetallic catalysts. The existence of multipoint actives in, Pt-Ir bimetallic catalysts gives improved performance for the Pt metalstate. Bimetallic catalysts have higher conversion for VOCs than monometallic ones. The addition, VOCs oxidation follows first order kinetics. The addition of small amount of Ir to Pt promotes oxidation conversion of VOCs.

Continuous electricity generation in microbial fuel cells with non-precious metal catalysts (비귀금속촉매 미생물연료전지의 연속운전을 통한 전기 생산)

  • Moon, Chungman;Kim, Dong-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.1
    • /
    • pp.45-51
    • /
    • 2015
  • In this study, continuous microbial fuel cells (MFCs) were operated using non-precious metal catalysts such as iron(II) phthalocyanine (FePc) and cobalt tetramethoxyphenylporphyrin (CoTMPP)) as alternative cathode catalysts for platinum. To evaluate MFCs performance, operational conditions of organic loading rate (OLR) (0.5~3 g COD/L/d) and hydraulic retention rate (HRT) (0.25~1 day) were changed. Power density of MFCs were determined by cathode electrode performance. The maximum power density was $3.3W/m^3$ with platinum at OLR 3 g COD/L/d. Given each HRTs at 1 g COD/L/d, FePc showed to be a better alternative for platinum than CoTMPP because the power density of MFC with FePc was similar to that of MFC with platinum. CoTMPP catalyst, however, showed the lowest power density due to increase of internal resistance during continuous operation.

Characteristics of VOCs Oxidation using Copper Phthalocyanine Catalysts (구리 프탈로시아닌 촉매의 VOCs 산화 특성)

  • 서성규;윤형선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.515-521
    • /
    • 2004
  • The catalytic oxidation of volatile organic compounds (methanol. acetaldehyde) has been characterized using the copper phthalocyanine catalyst in a fixed bed flow reactor under atmospheric pressure. The catalytic activity for pretreatment conditions was examined by this reaction system. The catalytic activity was ordered as follows: metal free-PC<Cu ($\alpha$)-PC<Cu ($\beta$)-PC The formaldehyde, carbon monoxide as a partial oxidation product of methanol and acetaldehyde over Cu ($\alpha$)-PC catalyst were detected and the conversions of methanol and acetaldehyde were accomplished above 95% over Cu ($\alpha$) -PC, Cu ($\beta$) - PC catalyst at 35$0^{\circ}C$. The pretreated metal free -PC, Cu($\alpha$)-PC, Cu($\beta$)-PC catalysts have been characterised by TGA, EA and XRD analysis. The catalytic activity pretreated with air and $CH_3$OH mixture (P-4) or air only (P-5) was very excellent. XRD and EA results showed that Cu($\alpha$)-PC, Cu($\beta$)-PC were destroyed an(1 new metal oxide such as CuO were formed.

Polymerization of p-Chlorophenyl Propargyl Ether by Molybdenum- and Tungsten- Based Catalysts

  • Lee, Won-Chul;Seo, Jang-Hyuk;Gal, Yeong-Soon;Jin, Sung-Ho;Choi, Sam-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.708-712
    • /
    • 1993
  • The Polymerization of p-chlorophenyl propargyl ether (CPE) was carried out using various transition metal catalysts. The catalytic activity of $MoCl_{5}$-based catalysts was greater than that of $WCl_6$-based catalysts. $MoCl_5$ alone and $MoCl_{5}$-cocatalyst systems polymerized CPE very effectively to give a high yield of poly(CPE). In most cases, the polymer yield was quantitative and the average molecular weight $({\bar{M}}n)$ was in the range of 9,000 and 17,000. The NMR, IR, UV-visible spectra indicated that the present poly(CPE) has a linear conjugated polyene structure having p-chlorophenyl oxymethylene substituent. The poly(CPE) was mostly dark-brown colored powder and was completely soluble in various organic solvents such as chloroform, methylene chloride, THF, chlorobenzene, etc. The X-ray diffraction analysis indicated that the present poly(CPE) is amorphous.

Catalytic synthesis and properties of β-Ga2O3 nanowires by metal organic chemical vapor deposition (MOCVD를 이용한 금속 촉매 종류에 따른 β-Ga2O3 나노 와이어의 제작과 특성)

  • Lee, Seunghyun;Lee, Seoyoung;Jeong, Yongho;Lee, Hyojong;Ahn, Hyungsoo;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Catalytic synthesis and properties of ${\beta}-Ga_2O_3$ nanowires grown by metal organic chemical vapor deposition are reported. Au, Ni and Cu catalysts were suitable for the growth of $Ga_2O_3$ nanowires under our experimental conditions. The $Ga_2O_3$ nanowires grown by using Au, Ni and Cu catalysts showed different growth rates and morphologies in each case. We found the $Ga_2O_3$ nanowires were grown by the Vapor-Solid (VS) process when Ni was used as a catalyst while the Vapor-Liquid-Solid (VLS) was a dominant process in case of Au and Cu catalysts. Also, we found nanowires showed different optical properties depend on catalytic metals. On the other hand, for the cases of Ti, Sn and Ag catalysts, nanowires could not be obtained under the same condition of Au, Cu and Ni catalytic synthesis. We found that these results are related to the different characteristics of each catalyst, such as, melting points and phase diagrams with gallium metal.

Novel mild fluorination method using light

  • Tien Tan Bui;Hee-Kwon Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.131-138
    • /
    • 2020
  • Fluorine compounds have attracted interest of scientists for immense applications in medicinal chemistry and pharmaceuticals. Recently, photoredox catalysts, both organic-based and metal-based compounds, have been employed in organic synthetic methodology to achieve desirable products due to facile operation and mild reaction condition. Various protocols to prepare fluorination adducts in the presence of photoredox catalysts have been developed from several starting materials with formation of radical scaffolds. In this review, we describe recent advances in the fluorination using light.

SBA-15 Supported Fe, Ni, Fe-Ni Bimetallic Catalysts for Wet Oxidation of Bisphenol-A

  • Mayani, Suranjana V.;Mayani, Vishal J.;Kim, Sang Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3535-3541
    • /
    • 2014
  • Bisphenol A is considered as pollutant, because it is toxic and hazardous to living organisms even at very low concentrations. Biological oxidation used for removing this organic from waste water is not suitable and consequently application of catalytic wet oxidation has been considered as one of the best options for treating bisphenol A. We have developed Fe/SBA-15, Ni/SBA-15 and Fe-Ni/SBA-15 as heterogeneous catalysts using the advanced impregnation method for oxidation of bisphenol A in water. The catalysts were characterized with physico-chemical characterization methods such as, powder X-ray diffraction (PXRD), FT-IR measurements, N2 adsorption-desorption isotherm, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. This work illustrates activity of the catalysts for heterogeneous catalytic degradation reaction revealed with excellent conversion and recyclability. The degradation products identified were not persistent pollutants. GC-MS analysis identified the products: 2,4-hexadienedioic acid, 2,4-pentadienic acid and isopropanol or acetic acid. The leachability study indicated that the catalysts release very little metals to water. Therefore, the possibility of water contamination through metal leaching was almost negligible.

Nonformaldehyde Anti-crease Finish of Ramie with Glyoxal (Part I) (글리옥살을 이용한 마직물의 무포름알데히드 방추가공(제 1보)-촉매의 영향)

  • 오경화;홍경화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.8
    • /
    • pp.1060-1068
    • /
    • 1998
  • The effects of various catalysts and softners on the anti-crease finish of ramie with glyoxal were investigated. A number of metal salts commonly used as Lewis acid catalysts in DP finishing of cotton with formaldehyde and N-methylol agents were screened for glyoxal treatment of ramie fabric. Various organic and inorganic acids were mixed with Lewis acid catalyst as co-catalysts to improve catalytic activity. As a result, the combination of aluminum sulfate and citric acid was proven highly effective in catalyzing the crosslinking of ramie cellulose by glyoxal under lower curing temperature. With a mixed catalyst, performance properties, such as whiteness and tearing strength as well as wrinkle recovery of treated ramie fabric were improved as compared with that treated with aluminum sulfate alone. Additional improvement of tearing strength and wrinkle recovery was achieved by applying silicons softner in the treatment bath.

  • PDF

Oxidation characterization of VOCs over noble metal catalyst using water treatment (Water 수처리를 이용한 귀금속 촉매의 VOCs 산화특성)

  • Kim, Moon-Chan
    • Analytical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.120-129
    • /
    • 2005
  • Volatile organic compounds (VOCs) have been recognized as major contributor to air pollution. The catalytic oxidationis is one of the most important processes for VOCs destruction due to the possibility getting high efficiency at low temperature. In this study, monometallic Pt, Ir and bimetallic Pt-Ir were supported to $TiO_2$. In order to distribute metals uniformly, $H_2O-H_2$ treatment method was used. Xylene, toluene and MEK were used as reactants. The monometallic or bimetallic catalysts were prepared by the excess wetness impregnation method and characterized by XRD, XPS, and TEM analysis. Pt catalyst showed higher conversion than Ir catalyst and Pt-Ir bimetallic catalyst showed the highest conversion. The catalysts prepared by $H_2O-H_2$ treatment had better VOC's conversion than that of nothing treatment. In the VOCs oxidation, Pt-Ir bimetallic catalysts had multipoint active sites, so it improved the range of Pt metal state. Therefore, bimetallic catalysts showed higher conversion of VOCs than monometallic ones. $H_2O-H_2$ treatment effected an uniform distribution of Pt particles. In VOCs oxidation was found to follow first order reaetion kinetics. The activation energy of $H_2O-H_2$ treatment catalysts was lower than that of untreated ones. In this study, the a small amount of Ir was used with Pt to promote the oxidation conversion of VOCs.

Utilization of Spent Catalysts for the Removal of VOCs (휘발성 유기화합물 제거를 위한 폐 촉매의 이용)

  • Kim, Sang Chai;Shim, Wang Geun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.303-313
    • /
    • 2007
  • Various commercial catalysts used in chemical related applications have been disposed as an industrial waste when the catalytic activity of catalysts is not good enough to achieve an optimum yield. In addition, the amount of disposed three way catalysts (TWC) has been continuously increased. Considering the physicochemical, environmental, and economical characteristics, the deactivated spent catalysts can be treated in several alternative ways such as regeneration, recycling, and disposal. In view of the environmental and economical matters, the spent catalyst should be regenerated and used for the various purposes, although its activity is not as good as a fresh catalyst. On the other hand, spent catalysts containing noble and metal oxides can be applicable for the catalytic oxidation of volatile organic compounds (VOCs) by applying the proper treatment method. Therefore in this review the quantity of the spent catalysts and the available regeneration methods for the spent catalysts are briefly summarized and especially the proper regeneration method for applying the catalytic oxidation of VOCs and its results are introduced.