DOI QR코드

DOI QR Code

Continuous electricity generation in microbial fuel cells with non-precious metal catalysts

비귀금속촉매 미생물연료전지의 연속운전을 통한 전기 생산

  • 문충만 (경희대학교 사회기반시스템공학과) ;
  • 김동훈 (인하대학교 사회인프라공학과)
  • Received : 2015.03.10
  • Accepted : 2015.03.24
  • Published : 2015.03.31

Abstract

In this study, continuous microbial fuel cells (MFCs) were operated using non-precious metal catalysts such as iron(II) phthalocyanine (FePc) and cobalt tetramethoxyphenylporphyrin (CoTMPP)) as alternative cathode catalysts for platinum. To evaluate MFCs performance, operational conditions of organic loading rate (OLR) (0.5~3 g COD/L/d) and hydraulic retention rate (HRT) (0.25~1 day) were changed. Power density of MFCs were determined by cathode electrode performance. The maximum power density was $3.3W/m^3$ with platinum at OLR 3 g COD/L/d. Given each HRTs at 1 g COD/L/d, FePc showed to be a better alternative for platinum than CoTMPP because the power density of MFC with FePc was similar to that of MFC with platinum. CoTMPP catalyst, however, showed the lowest power density due to increase of internal resistance during continuous operation.

본 연구에서는 비귀금속 촉매인 iron(II) phthalocyanine (FePc)와 cobalt tetramethoxyphenylporphyrin(CoTMPP)를 환원전극촉매로 이용하여 미생물연료전지의 연속운전을 진행하였다. 연속운전은 유기물 부하 (0.5~3 g COD/L/d)와 HRT (0.25~1 day)의 조건을 달리 운전하여 미생물연료전지의 성능을 평가하였다. 미생물연료전지의 전력밀도는 환원전극의 성능에 크게 영향을 받았으며, 최대전력밀도는 $3.3W/m^3$로 백금을 사용한 미생물연료전지에서 나타났다. 하지만, HRT의 조건을 달리 한 실험에서 FePc를 사용한 미생물연료전지가 백금을 사용한 미생물연료전지와 유사한 성능을 나타냈으며, 연속운전에서 백금 촉매를 대체할 수 있는 적합한 물질로 나타났다. 반면에 CoTMPP를 사용한 미생물연료전지는 연속운전에서 내부 저항의 급격한 증가로 전력밀도가 급격히 감소하였다.

Keywords

References

  1. 최영대, 이명은, 송영채, 우정희, 유규선, 이채영, 정재우, "미생물연료전지의 전기생산에 미치는 운전온도 및 전극간 거리의 영향", 유기성자원학회지, 20(1), pp. 41-49. (2012).
  2. Rozendal, R. A., Hamelers, V. M. H., Rabaey, K., Keller, J., and Buisman, C. J. N., "Towards practical implementation of bioelectrochemical wastewater treatment", Trends Biotechnol., 26, pp. 450-459. (2008). https://doi.org/10.1016/j.tibtech.2008.04.008
  3. He, Z., and Angenent, L.T., "Application of bacterial biocathodes in microbial fuel cells", Electroanalysis, 18, pp. 2009-2015. (2006). https://doi.org/10.1002/elan.200603628
  4. Schulenburg, H., Stankov, S., Schunemann, V., Radnik, J., Dorbandt, I., Fiechter, S., Bogdanoff, P., and Tributsch, H., "Catalysts for the oxygen reduction from heat-treated iron(III) tetramethoxyphenylporphyrin chloride: structure and stability of active sites", J. Phys. Chem. B, 107, pp. 9034-9041. (2003). https://doi.org/10.1021/jp030349j
  5. Cheng, S., Liu, H., and Logan, B. E., "Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells", Environ. Sci. Technol., 40, pp. 364-369. (2006). https://doi.org/10.1021/es0512071
  6. Zhang, F., Pant, D., and Logan, B. E., "Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells", Biosens. Bioelectron., 30, pp. 49-55. (2011).
  7. Zhang, F., Saito, T., Cheng, S., Hickner, M. A., and Logan, B. E., "Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors", Elctrochem. Commun., 11, pp.2177-2179. (2009). https://doi.org/10.1016/j.elecom.2009.09.024
  8. Clauwaert, P., van der Ha, D., Boon, N., Verbeken, K., Verchaege, M., Rabaey, K., and Verstraete, W., "Open air biocathode enables effective electricity generation with microbial fuel cells", Environ. Sci. Technol., 41, pp. 7564-7569. (2007). https://doi.org/10.1021/es0709831
  9. Nam, J., Moon, C., Jeong, E., Lee, W., Shin, H., and Kim, H., "Optimal metal dose of alternative cathode catalyst considering organic substances in single chamber microbial fuel cells", Envrion. Eng. Res., 18(3), pp. 145-150. (2013) https://doi.org/10.4491/eer.2013.18.3.145
  10. Zhao, F., Harnisch, F., Scholz, F., Bogdanoff, P. and Herrmann, I., "Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells", Elctrochem. Commun., 7, pp. 1405-1410. (2005). https://doi.org/10.1016/j.elecom.2005.09.032
  11. Nam, J., Kim, H., Lim, K., and Shin, H., "Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a singlechamber microbial fuel cell", Bioresource Technol., 101, pp. 533-537. (2010).
  12. Feng, Y., Lee, H., Wang, X., Liu, Y., and He, W., "Continuous electricity generation by a graphite granule baffled air-cathode microbial fuel cells", Bioresource Technol., 101(2), pp. 632-638. (2010). https://doi.org/10.1016/j.biortech.2009.08.046
  13. Kim, B., Park, H., Kim, H., Kim, G., Chang, I., and Lee, J., "Enrichment of microbial community generating electricity using a fuel-cell type electrochemical cell", Appl. Microbiol. Biotechnol., 63, pp.672-681. (2004). https://doi.org/10.1007/s00253-003-1412-6
  14. Moon, H., Chang, I., and Kim, B., "Continuous electricity production from artificial wastewater using a mediatorless microbial fuel cell:, Bioresource Technol., 97, pp. 621-627. (2006). https://doi.org/10.1016/j.biortech.2005.03.027