• Title/Summary/Keyword: organic metal catalysts

Search Result 76, Processing Time 0.02 seconds

Oxidative Decomposition of TCE over TiO2-Supported Metal Oxide Catalysts (TiO2에 담지된 금속 산화물 촉매상에서 TCE 산화분해반응)

  • Yang Won-Ho;Kim Moon-Hyeon
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.221-227
    • /
    • 2006
  • Oxidative TCE decomposition over $TiO_2$-supported single and complex metal oxide catalysts has been conducted using a continuous flow type fixed-bed reactor system. Different types of commercial $TiO_2$ were used for obtaining the supported catalysts via an incipient wetness technique. Among a variety of titanias and metal oxides used, a DT51D $TiO_2\;and\;CrO_x$ would be the respective promising support and active ingredient for the oxidative TCE decomposition. The $TiO_2-based\;CrO_x$ catalyst gave a significant dependence of the catalytic activity in TCE oxidation reaction on the metal loadings. The use of high $CrO_x$ contents for preparing $CrO_x/TiO_2$ catalysts might produce $Cr_2O_3$ crystallites on the surface of $TiO_2$, thereby decreasing catalytic performance in the oxidative decomposition at low reaction temperatures. Supported $CrO_x$-based bimetallic oxide systems offered a very useful approach to lower the $CrO_x$ amounts without any loss in their catalytic activity for the catalytic TCE oxidation and to minimize the formation of Cl-containing organic products in the course of the catalytic reaction.

Ni Nanoparticles Supported on MIL-101 as a Potential Catalyst for Urea Oxidation in Direct Urea Fuel Cells

  • Tran, Ngan Thao Quynh;Gil, Hyo Sun;Das, Gautam;Kim, Bo Hyun;Yoon, Hyon Hee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.387-391
    • /
    • 2019
  • A highly porous Ni@MIL-101catalyst for urea oxidation was synthesized by anchoring Ni into a Cr-based metal-organic framework, MIL-101, particles. The morphology, structure, and composition of as synthesized Ni@MIL-101 catalysts were characterized by X-Ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electro-catalytic activity of the Ni@MIL-101catalysts towards urea oxidation was investigated using cyclic voltammetry. It was found that the structure of Ni@MIL-101 retained that of the parent MIL-101, featuring a high BET surface area of $916m^2g^{-1}$, and thus excellent electro-catalytic activity for urea oxidation. A $urea/H_2O_2$ fuel cell with Ni@MIL-101 as anode material exhibited an excellent performance with maximum power density of $8.7mWcm^{-2}$ with an open circuit voltage of 0.7 V. Thus, this work shows that the highly porous three-dimensional Ni@MIL-101 catalysts can be used for urea oxidation and as an efficient anode material for urea fuel cells.

Aldol Condensation over Acid-Base Bifunctional Metal-Organic Framework Catalysts (산, 염기 이원기능 금속-유기 구조체 촉매를 이용한 알돌 축합반응)

  • Chung, Young-Min
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.116-122
    • /
    • 2014
  • Various types of MOFs (metal-organic frameworks) were prepared via hydrothermal and post-grafting methods and applied as catalysts for the synthesis of jasminaldehyde, one of the representative perfume intermediates, by Aldol condensation of benzaldehyde with heptanal. Although both acid and base sites could catalyze the reaction, the catalytic performance was strongly dependent on the physical properties as well as the nature of functionalization on MOFs. While the use of sulfonated MOF catalysts led to decrease of jasminaldehyde selectivity regardless of MOFs used, the selectivity change was found to rely on the MOF types in the case of the amine-functionalization. Among the catalysts tested, MIL-101 shows the best catalytic performance, which may suggest that MIL-101 has suitable acid properties to promote the Aldol condensation and the large pore of MIL-101 is also advantageous to alleviate the diffusion problem of bulky products.

Polymerization of 3-Ethynylphenol Try Transition Metal Catalysts

  • Gal, Yeong-Soon;Lee, Won-Chul;Jin, Sung-Ho;Lee, Hyung-Jong
    • Macromolecular Research
    • /
    • v.8 no.5
    • /
    • pp.231-237
    • /
    • 2000
  • The polymerization of 3-ethynylphenol, phenylacetylene having hydroxy functionality, was carried out by tungsten and molybdenum-based transition metal catalysts. The polymerization proceeded to give a moderate yield of polymer. The effects on the mole ratio of monomer to catalyst (M/C), initial monomer concentration ((Mb), and the polymerization temperature for the polymerization of 3-ethynylphenol were investigated. The catalytic activity of W-based catalysts was found to be greater than that of Mo-based catalysts. The resulting polymers were brown or black powders and mostly insoluble in organic solvents. Structural analysis of the polymer by instrumental methods revealed the conjugated polymer backbone structure carrying hydroxyphenyl moieties. Thermal and morphological properties of the resulting poly(3-ethynylphenol) were also discussed.

  • PDF

Polymerization of N-(Propargyloxy)phthalimide by Transition Metal Catalysts

  • Gal Yeong-Soon;Jung Bal;Lee Won-Chul;Choi Sam-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.625-627
    • /
    • 1992
  • This article deals with the synthesis and characterization of poly [N-(propargyloxy)phthalimide][poly (POPI)]. The polymerization of POPI was carried out by various transition metal catalysts. $MoCl_5$-based catalysts were found to be more effective than $WCl_6$-based catalysts. However, the polymer yield was relatively low (maximum 35%). The polymerization of POPI by $PdCl_2$ gave poly (POPI) in fair yields in DMF and pyridine. The resulting poly (POPI)s were mostly insoluble in organic solvents. The infrared spectrum of poly (POPI) showed no peak at 2135 $cm^{-1}$ due to acetylenic $C{\equiv}C$ stretching frequency. Instead, the carbon-carbon double bond stretching frequency was observed at 1600-1650 $cm^{-1}$. The TGA thermogram showed that the present poly (POPI) is thermally stable up to $160^{\circ}C.$.

Recent Research Trend of Zeolitic Imidazolate Framework-67 for Bifunctional Catalyst (ZIF-67을 이용한 이기능성 촉매의 최신연구 동향)

  • Kim, Sang Jun;Jo, Seung Geun;Park, Gil-Ryeong;Lee, Eun Been;Lee, Jae Min;Lee, Jung Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.98-106
    • /
    • 2022
  • Metal-organic frameworks (MOFs) are widely used in various fields because they make it easy to control porous structures according to combinations of metal ions and organic linkers. In addition, ZIF (zeolitic imidazolate framework), a type of MOF, is made up of transition metal ions such as Co2+ or Zn2+ and linkers such as imidazole or imidazole derivatives. ZIF-67, composed of Co2+ and 2-methyl imidazole, exhibits both chemical stability and catalytic activity. Recently, due to increasing need for energy technology and carbon-neutral policies, catalysis applications have attracted tremendous research attention. Moreover, demand is increasing for material development in the electrocatalytic water splitting and metal-air battery fields; there is also a need for bifunctional catalysts capable of both oxidation/reduction reactions. This review summarizes recent progress of bifunctional catalysts for electrocatalytic water splitting and metal-air batteries using ZIF-67. In particular, the field is classified into areas of thermal decomposition, introduction of heterogeneous elements, and complex formation with carbon-based materials or polyacrylonitrile. This review also focuses on synthetic methods and performance evaluation.

Preparation of Self-detoxifying Textile for Removal of Chemical Warfare Agents (군사목적의 유해화학물질 제거용 보호복 소재 제조를 위한 섬유 후가공 처리)

  • Kim, Hanil;Choi, Ik-Sung;Park, Seong-Woo;Han, Yo-han;Kim, Sung-Hun;Park, Hyun-Bae;Min, Mun-hong
    • Textile Coloration and Finishing
    • /
    • v.31 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • In this report, nano-sized catalysts were introduced onto fabric surface to eliminate toxic chemicals assisted by physical adsorption. For chemical removal of toxic compounds, a series of zirconium-containing catalysts were synthesized and treated on fabric to catalyze the hydrolysis and oxidation of target molecules. Antimicrobial was also introduced for the research purpose to prove the compatibility of as-synthesized catalysts with other solutions. Zirconium ligated with hydroxyl group and MOF(Metal-Organic Frameworks) were exploited as catalyst for removal of toxic compounds, while zinc complex was used for an antimicrobial to culminate in a chemical shield. Once fabrics were functionalized, fabrics were washed 2 or 5 times for a washing durability test. The amount of catalyst in textile were measured by ICP-MS and weight increasing ratio of fabrics.

Effect of promoter on platinum catalyst for oxidation of VOCs (VOCs 산화반응에서 Pt 촉매에 대한 조촉매의 영향)

  • Kim, Moon-Chan;Shin, Jin-Sil
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.422-432
    • /
    • 2006
  • The volatile organic compounds(VOCs) have been recognized as a major contributor to air pollution. The catalytic oxidation is one of the most important processes for VOCs destruction due to getting high efficiency at low temperature. In this study, monometallic Pt and bimetallic Pt-Ru, Pt-Ir were supported to ${\gamma}-Al_2O_3$. Xylene, toluene and MEK were used as reactants. The monometallic or bimetallic catalysts were prepared by the excess wetness impregnation method and were characterized by XRD, XPS, TEM and BET analysis. As a result, Pt-Ru, Pt-Ir bimetallic catalysts showed higher conversion than Pt monometallic catalyst. Pt-Ir bimetallic catalyst showed the highest conversion on the ${\gamma}-Al_2O_3$ support. In the VOCs oxidation, Pt-Ru, Pt-Ir bimetallic catalyst had multipoint active sites, so it improved the range of Pt metal state. Therefore, bimetallic catalysts showed higher conversion of VOCs than monometallic ones. In this study, the use of small amount of Ru, Ir to Pt promoted oxidation conversion of VOCs.

영가금속 및 촉매를 이용한 방향족 유기오염물의 환원

  • 김영훈;도혜현;신원식;하태욱;최상준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.176-179
    • /
    • 2003
  • The objective of this study was to investigate reductive dechlorination of aromatic hydrocarbons using zero valent metals (ZVMs) and catalysts as reactive materials for permeable reactive barriers (PRBs). A group of small aromatic hydrocarbons such as monochlorophenols, phenol, benzene were readily reduced with palladium catalyst and zero valent iron. Poly-aromatic hydrocarbons (PAHs) were also tested with the catalysts and zero valent metal combinations. The aromatic rings were reduced and partly reduced PAHs were found as the daughter compounds. Current preliminary study implicate that ZVMs and modified catalysts can be successfully applied for PRBs which currently applicable for halogenated organic compounds and some inorganic contaminants including chromium(Ⅵ) and nitrate.

  • PDF

Metallocene Catalysts on Carbon-based Nano-materials

  • Choi, Baek-Hap;Lee, Jun-O;Lee, Seung-Jun;Ko, Jae-Hyeon;Lee, Kyoung-Seok;Oh, Jung-Hoon;Kim, Yong-Hyun;Choi, In-Sung S.;Park, Sung-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.556-556
    • /
    • 2012
  • Transition metal-based organometallic complexes have shown great talents as a catalyst in various reactions. Designing organic molecules and coordinating them to such active centers have been a promising route to control the catalytic natures. Metallocene, which has transition metal atoms sandwiched by aromatic rings, is one of the representative systems for organometallic catalysts. Group 4-based metallocene catalysts have been most commonly used for the production of polyolefins, which have great world-wide markets in the real life. Graphenes and carbon nanotubes (CNTs) were composed of extended $sp^2$ carbon networks, showing high electron mobility as well as have extremely large steric bulkiness relative to metal centers. We were inspired by these characteristics of such carbon-based nano-materials and assumed that they could intimately interact with active centers of metallocene catalysts. We examined this hypothesis and, recently, reported that CNTs dramatically changed catalytic natures of group 4-based catalysts when they formed hybrid systems with such catalysts. In conclusion, we produced hybrid materials composed of group-4 based metallocenes, $Cp_2ZrCl_2$ and $Cp_2TiCl_2$, and carbon-based nano-materials such as RGO and MWCNT. Such hybrids were generated via simple adsorption between Cp rings of metallocenes and graphitic surfaces of graphene/CNT. The hybrids showed interesting catalytic behaviors for ethylene polymerizations. Resulting PEs had significantly increased Mw relative to those produced from free metallocene-based catalytic systems, which are not adsorbed on carbon-based nano-materials. UHMWPEs with extremely high Mw were obtained at low Tp.

  • PDF