DOI QR코드

DOI QR Code

Recent Research Trend of Zeolitic Imidazolate Framework-67 for Bifunctional Catalyst

ZIF-67을 이용한 이기능성 촉매의 최신연구 동향

  • Kim, Sang Jun (Department of Materials Science and Engineering, Pusan National University) ;
  • Jo, Seung Geun (Department of Materials Science and Engineering, Pusan National University) ;
  • Park, Gil-Ryeong (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Eun Been (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Jae Min (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Jung Woo (Department of Materials Science and Engineering, Pusan National University)
  • 김상준 (부산대학교 재료공학과) ;
  • 조승근 (부산대학교 재료공학과) ;
  • 박길령 (부산대학교 재료공학과) ;
  • 이은빈 (부산대학교 재료공학과) ;
  • 이재민 (부산대학교 재료공학과) ;
  • 이정우 (부산대학교 재료공학과)
  • Received : 2022.01.09
  • Accepted : 2022.02.07
  • Published : 2022.02.27

Abstract

Metal-organic frameworks (MOFs) are widely used in various fields because they make it easy to control porous structures according to combinations of metal ions and organic linkers. In addition, ZIF (zeolitic imidazolate framework), a type of MOF, is made up of transition metal ions such as Co2+ or Zn2+ and linkers such as imidazole or imidazole derivatives. ZIF-67, composed of Co2+ and 2-methyl imidazole, exhibits both chemical stability and catalytic activity. Recently, due to increasing need for energy technology and carbon-neutral policies, catalysis applications have attracted tremendous research attention. Moreover, demand is increasing for material development in the electrocatalytic water splitting and metal-air battery fields; there is also a need for bifunctional catalysts capable of both oxidation/reduction reactions. This review summarizes recent progress of bifunctional catalysts for electrocatalytic water splitting and metal-air batteries using ZIF-67. In particular, the field is classified into areas of thermal decomposition, introduction of heterogeneous elements, and complex formation with carbon-based materials or polyacrylonitrile. This review also focuses on synthetic methods and performance evaluation.

Keywords

Acknowledgement

This work was supported by a 2-Year Research Grant of Pusan National University.

References

  1. H. Furukawa, K. E. Cordova, M. O'Keeffe and O. M. Yaghi, Science, 341, 974 (2013).
  2. H. C. Zhou, J. R. Long and O. M. Yaghi, Chem. Rev., 112, 673 (2012). https://doi.org/10.1021/cr300014x
  3. Y. Yan, T. He, B. Zhao, K. Qi, H. F. Liu and B. Y. Xia, J. Mater. Chem. A, 6, 15905 (2018). https://doi.org/10.1039/C8TA05985C
  4. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne and J. T. Hupp, Chem. Rev., 112, 1105 (2012). https://doi.org/10.1021/cr200324t
  5. H. Li, K. C. Wang, Y. J. Sun, C. T. Lollar, J. L. Li and H. C. Zhou, Mater. Today, 21, 108 (2018). https://doi.org/10.1016/j.mattod.2017.07.006
  6. M. X. Wu and Y. W. Yang, Adv. Mater., 29, 1606134 (2017). https://doi.org/10.1002/adma.201606134
  7. J. Zhang, Y. Tan and W. J. Song, Microchim. Acta, 187, 1 (2020). https://doi.org/10.1007/s00604-019-3921-8
  8. K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe and O. M. Yaghi, Proc. Natl. Acad. Sci. USA., 103, 10186 (2006). https://doi.org/10.1073/pnas.0602439103
  9. W. J. Han, M. N. Li, Y. Y. Ma and J. P. Yang, Front. Chem., 8, 1025 (2020).
  10. B. J. Zhu, D. G. Xia and R. Q. Zou, Coord. Chem. Rev., 376, 430 (2018). https://doi.org/10.1016/j.ccr.2018.07.020
  11. N. Armaroli and V. Balzani, Angew. Chem. Int. Ed., 46, 52 (2007). https://doi.org/10.1002/anie.200602373
  12. S. Van Renssen, Nat. Clim. Change, 10, 799 (2020). https://doi.org/10.1038/s41558-020-0891-0
  13. D. Z. Li, H. Liu and L. G. Feng, Energy Fuels, 34, 13491 (2020). https://doi.org/10.1021/acs.energyfuels.0c03084
  14. Q. F. Liu, Z. F. Pan, E. D. Wang, L. An and G. Q. Sun, Energy Storage Mater., 27, 478 (2020). https://doi.org/10.1016/j.ensm.2019.12.011
  15. Y. T. Zhong, Y. T. Lu, Z. H. Pan, J. Yang, G. H. Du, J. W. Chen, Q. K. Zhang, H. B. Zhou, J. Wang, C. S. Wang and W. S. Li, Adv. Funct. Mater., 31, 2009853 (2021). https://doi.org/10.1002/adfm.202009853
  16. Z. L. Chen, Y. Ha, H. X. Jia, X. X. Yan, M. Chen, M. Liu and R. B. Wu, Adv. Energy Mater., 9, 1803918 (2019). https://doi.org/10.1002/aenm.201803918
  17. Q. Liu, Q. Shi, Y. Ma, Z. Fang, Z. Y. Zhou, G. Shao, H. T. Liu and W. Y. Yang, Chem. Eng. J., 423, 130313 (2021). https://doi.org/10.1016/j.cej.2021.130313
  18. W. X. Zhu, W. T. Zhang, Y. G. Li, Z. H. Yue, M. R. Ren, Y. Zhang, N. M. Saleh and J. L. Wang, J. Mater. Chem. A, 6, 24277 (2018). https://doi.org/10.1039/c8ta08577c
  19. L. J. Yang and L. Zhang, Appl. Catal., B, 259, 118053 (2019). https://doi.org/10.1016/j.apcatb.2019.118053
  20. S. Dilpazir, R. J. Liu, M. L. Yuan, M. Imran, Z. J. Liu, Y. B. Xie, H. Zhao and G. J. Zhang, J. Mater. Chem. A, 8, 10865 (2020). https://doi.org/10.1039/d0ta02411b
  21. Y. Pan, K. A. Sun, S. J. Liu, X. Cao, K. L. Wu, W. C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Q. Liu, D. S. Wang, Q. Peng, C. Chen and Y. D. Li, J. Am. Chem. Soc., 140, 2610 (2018). https://doi.org/10.1021/jacs.7b12420
  22. L. J. Yang, H. Li, Y. Yu, Y. Wu and L. Zhang, Appl. Catal., B, 271, 118939 (2020). https://doi.org/10.1016/j.apcatb.2020.118939
  23. L. L. Chai, Z. Y. Hu, X. Wang, Y. W. Xu, L. J. Zhang, T. T. Li, Y. Hu, J. J. Qian and S. M. Huang, Adv. Sci., 7, 1903195 (2020). https://doi.org/10.1002/advs.201903195
  24. J. Li, S. Lu, H. Huang, D. Liu, Z. Zhuang and C. Zhong, ACS Sustainable Chem. Eng., 6, 10021 (2018). https://doi.org/10.1021/acssuschemeng.8b01332
  25. Y. Yu, X. Peng, U. Ali, X. Liu, Y. Xing and S. Xing, Inorg. Chem. Front., 6, 3255 (2019). https://doi.org/10.1039/c9qi01025d
  26. X. Li, S. You, J. Du, Y. Dai, H. Chen, Z. Cai, N. Ren and J. Zou, J. Mater. Chem. A, 7, 25853 (2019). https://doi.org/10.1039/c9ta08926h
  27. D. Yin, M.-L. Wang, Y.-D. Cao, X. Yang, S.-Y. Ji, H.- P. Hao, G.-G. Gao, L.-L. Fan and H. Liu, ACS Appl. Energy Mater., 4, 6892 (2021). https://doi.org/10.1021/acsaem.1c01000
  28. Y. Zhang, P. Wang, J. Yang, S. Lu, K. Li, G. Liu, Y. Duan and J. Qiu, Carbon, 177, 344 (2021). https://doi.org/10.1016/j.carbon.2021.02.052
  29. M. Li, C. Bao, Y. Liu, J. Meng, X. Liu, Y. Cai, D. Wuu, Y. Zong, T.-P. Loh and Z. Wang, RSC Adv., 9, 16534 (2019). https://doi.org/10.1039/c9ra02389e
  30. W. Zhang, X. Yao, S. Zhou, X. Li, L. Li, Z. Yu and L. Gu, Small, 14, 1800423 (2018). https://doi.org/10.1002/smll.201800423
  31. J. Guo, M. Gao, J. Nie, F. Yin and G. Ma, J. Colloid Interface Sci., 544, 112 (2019). https://doi.org/10.1016/j.jcis.2019.02.084