DOI QR코드

DOI QR Code

Oxidative Decomposition of TCE over TiO2-Supported Metal Oxide Catalysts

TiO2에 담지된 금속 산화물 촉매상에서 TCE 산화분해반응

  • Yang Won-Ho (Department of Environmental Engineering, Daegu University) ;
  • Kim Moon-Hyeon (Department of Occupational Health, Catholic University of Daegu)
  • 양원호 (대구대학교 환경공학과) ;
  • 김문현 (대구가톨릭대학교 산업보건학과)
  • Published : 2006.03.01

Abstract

Oxidative TCE decomposition over $TiO_2$-supported single and complex metal oxide catalysts has been conducted using a continuous flow type fixed-bed reactor system. Different types of commercial $TiO_2$ were used for obtaining the supported catalysts via an incipient wetness technique. Among a variety of titanias and metal oxides used, a DT51D $TiO_2\;and\;CrO_x$ would be the respective promising support and active ingredient for the oxidative TCE decomposition. The $TiO_2-based\;CrO_x$ catalyst gave a significant dependence of the catalytic activity in TCE oxidation reaction on the metal loadings. The use of high $CrO_x$ contents for preparing $CrO_x/TiO_2$ catalysts might produce $Cr_2O_3$ crystallites on the surface of $TiO_2$, thereby decreasing catalytic performance in the oxidative decomposition at low reaction temperatures. Supported $CrO_x$-based bimetallic oxide systems offered a very useful approach to lower the $CrO_x$ amounts without any loss in their catalytic activity for the catalytic TCE oxidation and to minimize the formation of Cl-containing organic products in the course of the catalytic reaction.

Keywords

References

  1. Kosusko, M. and C. M. Nunez, 1990, Destruction of volatile organic compounds using catalytic oxidation, J. Air Waste Manage. Assoc., 40, 254-259 https://doi.org/10.1080/10473289.1990.10466682
  2. Bond, G. C. and N. Sadeghi, 1975, Catalysed destruction of chlorinated hydrocarbons, J. Appl. Chem. Biotech., 25, 241-248
  3. Lindberg, R. C., J. D. Reedy and K. Yang, 1977, Decomposition of halogenated organic compounds, U.S. Patent 4,059,683
  4. Yang, K. and J. D. Reedy, 1977, Decomposition of halogenated organic compounds, U.S. Patent 4.059,676
  5. Dalton, A. I. and S. Sircar, 1982, Stabilization and regeneration of activated carbon supported palladium chloride catalysts in the oxidation of vinyl halides, U.S. Patnt 4,346,019
  6. Sare, E. J. and J. M. Lavanish, 1977, Catalytic oxidation of $C_2{\sim}C_4$ halogenated hydro-carbons, U.S. Patent 4,065,543
  7. Manning, M. P., 1984, Fluid bed catalytic oxidation: An underdeveloped hazardous waste disposal technology, Hazard. Waste, 1, 41-65 https://doi.org/10.1089/hzw.1984.1.41
  8. Hunter, W. K, L. C. Hardison and E. J. Dowd, 1982, Catalytic fume incineration, U.S. Patent 4,330,513
  9. Agarwal, S. K., J. J. Spivey and J. B. Butt, 1992, Deep oxidation of hydrocarbons, Appl. Catal. A, 81, 239-255 https://doi.org/10.1016/0926-860X(92)80096-U
  10. Hung, S. L. and L. D. Pfefferle, 1989, Methyl chloride and methylene chloride incineration in a catalytically stabilized thermal combustor, Environ. Sci. Technol., 23, 1085-1091 https://doi.org/10.1021/es00067a003
  11. Weldon, J. and S. M. Senkan, 1986, Catalytic combustion of $CH_3Cl$ by $Cr_2O_3$, Combust, Sci. Technol., 47, 229-237 https://doi.org/10.1080/00102208608923875
  12. Scharf, U. H. Schneider, A. Baiker and A. Wokaun, 1994, Chromia supported on titania: III. Structure and spectroscopic properties, J. Catal., 145, 464-478 https://doi.org/10.1006/jcat.1994.1057
  13. Yim, S. D. D. J. Koh, I. S. Nam and Y. G. Kim, 2000, Effect of the catalyst supports on the removal of perchloroethylene (PCE) over chromium oxide catalysts, Catal. Lett., 64, 201-207 https://doi.org/10.1023/A:1019076112539
  14. Yim, S. D., K H. Chang, D. J. Koh, I. S. Nam and Y. G. Kim, 2000, Catalytic removal of perchloroethylene (PCE) over supported chromium oxide catalysts, Catal. Today, 63, 215-222 https://doi.org/10.1016/S0920-5861(00)00462-4
  15. Kim, M. H. and K H. Choo, 2003, Use of complex metal oxides for catalytic TCE oxidation, Theor. Appl. Chem. Eng., 9, 1180-1183
  16. Kim, M. H. and K. H. Choo, 2005, On-stream activity and surface chemical structure of $CoO_x/TiO_2$ catalysts for continuous wet TCE oxidation, J. Environ. Sci., 14, 221-230 https://doi.org/10.5322/JES.2005.14.2.221
  17. Spivey, J. J., 1987, Complete catalytic oxidation of volatile organics, Ind. Eng. Chem. Res., 26, 2165-2180 https://doi.org/10.1021/ie00071a001
  18. Jagannathan, K., A. Srinivasan and C. N. R. Rao, 1981, An XPS study of the surface oxidation states of metals in some oxide catalysts, J. Catal., 69, 418-427 https://doi.org/10.1016/0021-9517(81)90177-9
  19. Hong, C. W., M. H. Kim, I. S. Nam and Y. G. Kim, 1998, Effect of supports and transition metal oxides on the catalytic decomposition of trichloroethylene, Korean Chem. Eng. Res., 36, 206-214
  20. Bose, D. and S. M. Senkan, 1983, On the combustion of chlorinated hydrocarbons: I. Trichloroethylene, Combust. Sci. Technol., 35, 187-202 https://doi.org/10.1080/00102208308923710
  21. Stenger, Jr., H. G., G. E. Buzan and J. M. Berty, 1993, Chlorine capture by catalystsorbents for the oxidation of air pollutants, Appl. Catal. B, 2, 117-130 https://doi.org/10.1016/0926-3373(93)80030-H
  22. Wang, Y., H. Shaw and R. J. Farrauto, 1992, Catalytic oxidation of trace concentrations of trichloroethylene over 1.5% platinum on g-alumina, ACS Symp. Ser., 495, 125-140
  23. 전순표, 1992, 우리나라 쥐 및 위생해충 방제에 대한 문제점과 개선방향, 대한위생학회지, 7, 129-140

Cited by

  1. Catalysts and Their Activity in TCE Oxidation vol.23, pp.5, 2014, https://doi.org/10.5322/JESI.2014.5.829