• Title/Summary/Keyword: organic manure

Search Result 688, Processing Time 0.021 seconds

Survival of Salmonella enterica and Listeria monocytogenes in Chicken and Pig Manure Compost

  • Jung, Kyu-Seok;Heu, Sung-Gi;Roh, Eun-Jung;Kim, Min-Ha;Gil, Hyun-Ji;Choi, Na-Young;Lee, Dong-Hwan;Lim, Jeong-A;Ryu, Jae-Gee;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.469-473
    • /
    • 2013
  • Livestock manure is a valuable source of nutrients and organic matter for plant. Thus, livestock manure compost is commonly used fertilizer in organic vegetable and fruit production in many countries. However, contaminated or inadequate manure compost can give negative effect to soil microorganisms. This study was conducted to investigate the survival difference of Salmonella enterica and Listeria monocytogenes in chicken and pig manure compost under the selected environmental conditions. Commercially available manure compost (pig, chicken) was inoculated with S. enterica and L. monocytogenes. Manure compost was incubated at $25^{\circ}C$ and consistent moisture content. Samples had been collected during 200 days depending on the given conditions. S. enterica survived for 130 days in pig manure compost and over 200 days in chicken manure compost, respectively. L. monocytogenes persisted for 120 days in pig manure compost and over 200 days in chicken manure compost, respectively. It is noted that the number of S. enterica and L. monocytogenes gradually decreased over time. The results indicate that S. enterica survived longer than L. monocytogenes in manure compost at $25^{\circ}C$. S. enterica and L. monocytogenes survived longer in chicken manure compost than in pig manure compost. Increased knowledge of pathogen behavior in agricultural environments is a valuable part of future work on improving risk evaluations and, in a longer perspective, in providing data for guidelines regarding safe handling of pathogen-contaminated manure compost and soil.

Evaluating Feeding of Organic Waste and Stirring Interval to Optimize Anaerobic Digestion

  • Kim, Gi-Woong;Kim, Sang-Hun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.366-376
    • /
    • 2014
  • Purpose: In the process of anaerobic digestion, stirring of the digester and feeding of organic waste into the digester have been considered important factors for digestive efficiency. The objective of this study was to determine the most appropriate conditions for both stirring interval of the digester and organic feeding frequency in order to improve anaerobic digestion performance. Methods: A 5-L anaerobic digester was used to conduct continuous batch tests to process swine manure and food waste. Four different stirring intervals of the digester were used: 5 min/h, 10 min/2 h, 15 min/3 h, and 20 min/4 h. Results: The application of swine manure to the digester every 5 min/h resulted in the highest production of biogas as well as the highest removal rates of volatile solids (VS) and total chemical oxygen demand. Stirring the digester with a mixture of swine manure and food waste at intervals of 5min/h and 10min/2 h produced the highest biogas yields of 515.3 mL/gVS and 521.1 mL/gVS, respectively. To test different supply frequencies, organic waste was added to the digester in either a 12-hor 24-h cycle. The 24-h cycle produced 1.5-fold greater biogas production than that during the 12-h cycle. Conclusions: Thus, from the above results, to optimize anaerobic digestion performance, the ideal stirring condition must be 5min/h for swine manure feeding and 10min/2h for co-digestion of food waste and swine manure in a 24-h cycle.

Soil Carbon Dioxide Flux and Organic Carbon in Grassland after Manure and Ammonium Nitrate Application

  • Lee, Do-Kyoung;Doolittle, James J.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.238-244
    • /
    • 2005
  • Fertilization effects on changes in soil $CO_2$ flux and organic C in switchgrass (Panicum virgatum L.) land managed for biomass production were investigated. The mean daily soil $CO_2$ flux in the manure treatment was 5.63 g $CO_2-C\;m^{-2}\;d^{-1}$, and this was significantly higher than the mean value of 3.36 g $CO_2-C\;m^{-2}\;d^{-1}$ in the control. The mean daily $CO_2$ fluxes in N and P fertilizer treatments plots were not different when compared to the value in the control plots. Potentially mineralizable C (PMC), soil microbial biomass C (SMBC), and particulate organic C (POC) were highest at the 0 to 10 cm depth of the manure treatment. Potentially mineralizable C had the strongest correlation with SMBC (r = 0.91) and POC (r = 0.84). There was also a strong correlation between SMBC and POC (r = 0.90). Our results indicated that for the N and P levels studied, fertilization had no impact on temporal changes in soil organic C, but manure application had a significant impact on temporal changes in soil $CO_2$ evolution and active C constituents such as PMC, SMBC, and POC.

Anaerobic Biotreatment of Animal Manure - A review of current knowledge and direction for future research -

  • Hong, Jihyung
    • Journal of Animal Environmental Science
    • /
    • v.11 no.2
    • /
    • pp.97-102
    • /
    • 2005
  • Anaerobic decomposition is one of the most common processes in nature and has been extensively used in waste and wastewater treatment for several centuries. New applications and system modifications continue to be adapted making the process either more effective, less expensive, or suited to the particular waste in question and the operation to which it is to be applied. Animal manure is a highly biodegradable organic material and will naturally undergo anaerobic fermentation, resulting in release of noxious odors, such as in manure storage pits. Depending on the presence or absence of oxygen in the manure, biological treatment process may be either aerobic or anaerobic. Under anaerobic conditions, bacteria carry on fermentative metabolisms to break down the complex organic substances into simpler organic acids and then convert them to ultimately formed methane and carbon dioxide. Anaerobic biological systems for animal manure treatment include anaerobic lagoons and anaerobic digesters. Methane and carbon dioxide are the principal end products of controlled anaerobic digestion. These two gases are collectively called biogas. The biogas contains $60\~70\%$ methane and can be used directly as a fuel for heating or electrical power generation. Trace amounts of ammonia and hydrogen sulfide ($100\~300\;ppm$) are always present in the biogas stream. Anaerobic lagoons have found widespread application in the treatment of animal manure because of their low initial costs, ease of operation and convenience of loading by gravity flow from the animal buildings. The main disadvantage is the release of odors from the open surfaces of the lagoons, especially during the spring warm-up or if the lagoons are overloaded. However, if the lagoons are covered and gases are collected, the odor problems can be solved and the methane collected can be used as a fuel. Anaerobic digesters are air-tight, enclosed vessels and are used to digest manure in a well-controlled environment, thus resulting in higher digestion rates and smaller space requirements than anaerobic lagoons. Anaerobic digesters are usually heated and mixed to maximize treatment efficiency and biogas production. The objective of this work was to review a current anaerobic biological treatment of animal manure for effective new technologies in the future.

  • PDF

Assessment of N-Loading and Manure Units for Regional Recycling Farming -Case Study in Yeoju-Gun Region- (지역순환농업을 위한 분뇨단위 설정과 질소부하 평가 -여주지역 사례-)

  • Ryoo, Jong-Won;Choi, Deog-Cheon
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.1
    • /
    • pp.21-36
    • /
    • 2012
  • In this study, the assessment of livestock manure nitrogen loading for recycling farming in Yeoju-Gun carried out comparing manure units based on the cultivation areas and the N-amount of manure that are generated from livestock manure. Manure units (MU) are used in the permitting, registration, because they allow equal standards for all animals based on manure nutrient production. An MU is calculated by multiplying the number of animals by manure unit factor for the specific type of animal. The manure unit factor for MU determination was determined by dividing amounts of manure N produced 80kg N/year. In this study, manure unit by nitrogen concentration and amount of animal manure was calculated as follows: Hanwoo multiplied by 0.36, dairy cows multiplied by 0.8. swine multiplied by 0.105. The laying hens and broilers multiplied by 0.0079, 0.0049, respectively. The analysis of liquid manure unit per ha shows that the N loading by LMU is quite different by region. When it comes to nitrogen loading, the LMU per ha of cultivated land in excess of the N-amount was the highest in the Bukne-myeon province with 2.76 MU/ha, which is higher than the appropriate level. The Ganam-myeon province came next with 2.53 LMU. To be utilized as a valid program to build the environmentally friendly agricultural system, diverse measures shall be mapped out to properly determine manure units, evaluate N-loading and to properly manage their nutrient balance of each region.

Emission Patterns of Carbon Dioxide & Methane by Liquid Pig Manure Treatments in Paddy Soil (논토양에서 돈분액비 시용에 따른 CH4 및 CO2 발생양상)

  • Oh, Seung-Ka;Yoon, Dong-Kyung;Lee, Eun-Jung;Lee, Byung-Jin;Jeon, Seung-Ho;Cho, Young-Son
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.923-938
    • /
    • 2015
  • This study was conducted to serve as the basis for establishing a standard cultivation, which enhances the alternative utilization of pig manure, a major cause of environmental pollution, by finding a means for reducing greenhouse gas emissions for eco-friendly cultivation. In a laboratory, $CH_4$ and $CO_2$ emission patterns were investigated corresponding to incremental pig manure treatments in paddy soil. The emissions peaked 12 to 27 days after manure application in the 100~400% applications. It was found that increasing applications of pig manure resulted an increase in $CH_4$ and $CO_2$ emissions. Additionally, application of more than 150% emitted a larger amount of these gasses than applying chemical fertilizer. However, the test application of 100% pig manure emitted a smaller amount of $CH_4$ and hence Global Warming Potential (GWP) than those emitted by chemical fertilizer. If appropriate amount of fertilization is applied in compliance with the standard application rate, the pig manure may be effective in reducing greenhouse gas emissions and the soil environment made more favorable than with the use of chemical fertilizer.

Influences of Phosphorus Content and Phytase Activity from the Vermicomposting Environment (Vermicomposting 조건에서 분리한 Phytase의 활성화의 인 함량에 미치는 영향)

  • 이주삼
    • Journal of Animal Environmental Science
    • /
    • v.6 no.1
    • /
    • pp.45-52
    • /
    • 2000
  • The effect of earthworm on the recycling or control of organic P in environment has been investigated. The activity of phytase(myo-inositol hexaposphate phosphohydrolase, EC 3.1.3.8) produced by isolated microoganisms from vermicomposted cow manure was usually higher than that of phytase produced by isolated microorganisms from composted cow manure. However the activity of phytase excreted by seperated earthworm(Eisenia foetida) was not detected. The concentration of total P and available P was revealed 2.88%, 0.22% in composted cow manure and 1.70% 0.14% in vermicomposted cow manure.

  • PDF

Soil Organic Matter Fractions in Upland Soil under Successive Application of Animal Manure Composts (밭 토양에서 가축분퇴비 연용시 토양 유기물 Fraction)

  • Yun, Hong-Bae;Lee, Youn;Yu, Chang-Yeon;Yang, Jae-E;Lee, Yong-Bok;Lee, Kee-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.400-404
    • /
    • 2007
  • The objective of this study was to analyze change of soil organic matter fraction from a range of livestock manure compost that differed in their total C, N content and C quality, to gain a better understanding of their influence on soil organic matter. The chicken (CHM), pig (PIM), and cow (COM) manure-based composts, and manure-sawdust-based composts (CHMS, PIMS, and COMS) were applied annually to the upland soil with $3Mg\;C\;ha^{-1}$ during 4 years. After 4 years, the soil carbon content was increased to 25-30 and 40% for manure-based compost and manure-sawdust-based compost compared to control. In the all treatments, the content of light fraction C was sharply increased after second year. The content of light fraction C in the manure-sawdust-based compost was higher than in the manure-based compost. By contrast, the content of heavy fraction C was higher in the manure-based compost than in the manure-sawdust-based compost. These results indicate that stabilization of carbon applied from microbiological process was faster in the manure-based compost than in the manure-sawdust-based compost.

Effects of Applying Cattle Manure on Carrying Capacity of Organic Livestock per Unit Area of Summer Forage Crops (우분뇨 시용이 하계사료작물의 단위면적당 유기가축 사육능력에 미치는 영향)

  • Jo, Ik-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.2
    • /
    • pp.185-198
    • /
    • 2011
  • This study was carried out to select a proper forage crop, and to estimate the proper level of application of cattle manure and carrying capacity of organic livestock per unit area. Corns and forage sorghum hybrids were cultivated with different types of livestock manures and different amount of them to produce organic forage. For both corns and forage sorghum hybrids, no fertilizer plots had significantly (p<0.05) lower annual dry matter (DM), crude protein (CP) and total digestible nutrients (TDN) yields than those of other plots, whereas the N-P-K (nitrogen-phosphorous-kalium) plots ranked the highest yields, followed by 150% cattle manure plots and 100% cattle manure plots. DM, CP and TDN yields of in cattle manure plots were significantly (p<0.05) higher than those of no fertilizer and P-K (phosphorous-kalium) plots. The yields of in cattle slurry plots tended to be a little higher than those of in composted cattle manure plots. Assuming that corn and forage sorghum hybrids produced from this trial were fed at 70% level to 450kg of Hanwoo heifer for 400g of average daily gain, the carrying capacity (head/year/ha) of livestock ranked the highest in 150% cattle slurry plots (mean 6.0 heads), followed by 100% cattle slurry plots (mean 5.3 heads), 150% composted cattle manure plots (mean 4.7 heads), 100% composted cattle manure plots (mean 4.4 heads), and no fertilizer plots (mean 2.8 heads) in corns (or the cultivation of corns). Meanwhile, in the case of forage sorghum hybrids, 150% cattle slurry plots (mean 6.4 heads) ranked the highest carrying capacity, followed by 150% composted cattle manure plots (mean 4.8 heads), 100% cattle slurry plots (mean 4.4 heads), 100% composted cattle manure plots (mean 4.1 heads), and no fertilizer plots (mean 2.8 heads). The results indicated that the application of livestock manure to cultivated soil could enhance not only DM and TDN yields, but also the carrying capacity of organic livestock as compared with the effect of chemical fertilizers. In conclusion, the production of organic forage with reutilized livestock manure will facilitate the reduction of environmental pollution and the production of environmentally friendly agricultural products by resource circulating system.

Persistence of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes in Soil, Liquid Manure Amended Soil, and Liquid Manure

  • Jung, Kyu-Seok;Kim, Min-Ha;Heu, Sung-Gi;Roh, Eun-Jung;Lee, Dong-Hwan;Lim, Jeong-A;Ryu, Jae-Gee;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.432-436
    • /
    • 2014
  • While searching for healthier diets, people became more attentive to agricultural organic products. However, organic foods may be more susceptible to microbiological contamination because of the use of livestock manure compost and liquid manure, potential sources of pathogenic bacteria. This study was undertaken to investigate the persistence of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes in soil, liquid manure amended soil, and liquid manure. Loamy soil, liquid manure amended soil, and liquid manure were inoculated with S. enterica, E. coli O157:H7, and L. monocytogenes. Samples were incubated in consistent moisture content at $25^{\circ}C$. Samples had been periodically collected during 120 days depending on the given conditions. S. enterica and E. coli O157:H7 survived over 120 days in loamy soil and over 60 days in liquid manure amended soil, respectively. L. monocytogenes decreased faster than other pathogens in soil. S. enterica, E. coli O157:H7, and L. monocytogenes survived for up to 5 days in liquid manure. S. enterica and E. coli O157:H7 in soil decreased by 2 to $2.5log\;CFU\;g^{-1}$ for 120 days. S. enterica and E. coli O157:H7 in liquid manure amended soil decreased slowly for 21 days. However, S. enterica, E. coli O157:H7, and L. monocytogenes sharply decreased after 21 days. S. enterica, E. coli O157:H7, and L. monocytogenes in soil increased by 0.5 to $1.0log\;CFU\;g^{-1}$ for 7 days. Foodborne pathogens in soil and liquid manure amended soil gradually decreased over time.