Effects of Applying Cattle Manure on Carrying Capacity of Organic Livestock per Unit Area of Summer Forage Crops

우분뇨 시용이 하계사료작물의 단위면적당 유기가축 사육능력에 미치는 영향

  • Received : 2010.04.27
  • Accepted : 2010.06.22
  • Published : 2011.06.30

Abstract

This study was carried out to select a proper forage crop, and to estimate the proper level of application of cattle manure and carrying capacity of organic livestock per unit area. Corns and forage sorghum hybrids were cultivated with different types of livestock manures and different amount of them to produce organic forage. For both corns and forage sorghum hybrids, no fertilizer plots had significantly (p<0.05) lower annual dry matter (DM), crude protein (CP) and total digestible nutrients (TDN) yields than those of other plots, whereas the N-P-K (nitrogen-phosphorous-kalium) plots ranked the highest yields, followed by 150% cattle manure plots and 100% cattle manure plots. DM, CP and TDN yields of in cattle manure plots were significantly (p<0.05) higher than those of no fertilizer and P-K (phosphorous-kalium) plots. The yields of in cattle slurry plots tended to be a little higher than those of in composted cattle manure plots. Assuming that corn and forage sorghum hybrids produced from this trial were fed at 70% level to 450kg of Hanwoo heifer for 400g of average daily gain, the carrying capacity (head/year/ha) of livestock ranked the highest in 150% cattle slurry plots (mean 6.0 heads), followed by 100% cattle slurry plots (mean 5.3 heads), 150% composted cattle manure plots (mean 4.7 heads), 100% composted cattle manure plots (mean 4.4 heads), and no fertilizer plots (mean 2.8 heads) in corns (or the cultivation of corns). Meanwhile, in the case of forage sorghum hybrids, 150% cattle slurry plots (mean 6.4 heads) ranked the highest carrying capacity, followed by 150% composted cattle manure plots (mean 4.8 heads), 100% cattle slurry plots (mean 4.4 heads), 100% composted cattle manure plots (mean 4.1 heads), and no fertilizer plots (mean 2.8 heads). The results indicated that the application of livestock manure to cultivated soil could enhance not only DM and TDN yields, but also the carrying capacity of organic livestock as compared with the effect of chemical fertilizers. In conclusion, the production of organic forage with reutilized livestock manure will facilitate the reduction of environmental pollution and the production of environmentally friendly agricultural products by resource circulating system.

본 실험은 가축분뇨에 의한 유기 조사료를 생산하기 위하여 옥수수와 사초용 수수를 재배 시 가축분뇨의 종료와 시용수준을 달리하여 적절한 사료작물의 선발, 가축분뇨의 적정 시용 수준 및 단위면적당 유기가축 사육능력을 추정하고자 하였는데, 옥수수와 사초용 수수의 건물수량, 조단백질(CP) 수량 및 가소화양분(TDN) 수량은 무비구가 ha 당 각각 8.5, 0.30 및 4.6톤 그리고 8.1, 0.34 및 4.3톤/ha으로 모든 처리구 보다 유의하게 낮은 건물수량을 나타내었고(p<0.05), 질소, 인산 및 칼리를 시용한 처리구가 ha 당 18.7, 1.02 및 14.3톤 그리고 22.8, 1.02 및 12.2톤으로 가장 높았다. 한편 옥수수의 경우, 액상 우분뇨와 발효 우분을 100~150% 시용한 구는 연간 건물, 조단백질 및 TDN 수량이 ha 당 각각 11.4~13.2, 0.63~0.73 및 8.3~9.2톤 그리고 11.1~11.8, 0.45~0.48 및 7.6~8.0톤으로 무비구 및 인산과 칼리를 시용한 구(8.8, 0.48 및 6.9톤/ha) 보다 높았다. 사초용 수수도 액상 우분뇨 100~150% 시용구가 ha 당 각각 13.7~18.1, 0.50~0.81 및 7.1~9.7톤으로 다른 처리구 보다 높았으며 다음으로 발효우분 100~150% 시용수준에서 ha 당 각각 12.0~14.7, 0.46~0.53 및 6.6~7.7톤을 나타내어 인산과 칼리를 시용한 구(9.5, 0.38 및 5.1톤/ha)와 무비구 보다 높았다. 유기 한우 암소 육성우 약 450kg을 일일 증체 400g 목표로 하여 옥수수를 유기 사료 자원으로 70% 급여할 시에 필요로 하는 조단백질과 TDN 함�c을 감안할 때, 액상 우분뇨 150% 시용구(각각 4.7과 7.3 및 평균 6.0두)>액상 우분뇨 100% 시용구(각각 4.1과 6.6 및 평균 5.3두)>발효우분 150% 시용구(각각 3.1과 6.3 및 평균 4.7두)>발효우분 100% 시용구(각각 2.9와 6.0 및 평균 4.4두)>무비구(각각 1.9와 3.6 및 평균 2.8두) 순으로 낮아졌다. 한편 사초용 수수의 경우에는 액상 우분뇨 150% 시용구(ha 당 각각 연간 5.2와 7.7 및 6.4두)>발효우분 150% 시용구(각각 3.4와 6.1 및 평균 4.8두)>액상 우분뇨 100% 시용구(각각 3.2와 5.6 및 평균 4.4두)>발효우분 100% 시용구(각각 2.9와 5.2 및 평균 4.1두)>무비구(각각 2.2와 3.4 및 평균 2.8두) 순으로 유기가축 사육능력이 감소하였다. 이상의 결과로부터, 사료작물 재배토양에 인산과 칼리 등 화학비료 대신 가축분뇨의 시용은 사초의 건물 및 가소화양분수량을 향상시킬 수 있을 뿐만 아니라 연간 유기가축 사육능력도 증대하여, 가축분뇨재활용을 통한 유기조사료의 생산은 환경오염 감소와 자원순환형 친환경 농산물 생산에도 기여할 수 있을 것으로 사료된다.

Keywords

References

  1. 김문철.송상택.황경준.임한철, 2006. 돈분 액비 시용이 피의 생산성, 토양 특성 및 용탈수의 화학적 조성에 미치는 영향. 한초지. 26(4): 257-266.
  2. 나훈찬.정민웅.최연식.최기춘.육완방. 2006. 우분액비 및 톱밥발효돈분 시용이 사일리 지 옥수수 생산성 및 양분용탈에 미치는 영향. 한초지. 26(4): 177-186.
  3. 농림부. 2002. 한우사양표준.
  4. 박병훈.김상덕.김태환.성경일.이병현.이주삼.전병태.조익환. 2005. 조사료자원학. pp. 201-233.
  5. 유덕기. 2002. 가축분뇨의 배출규제 문제와 처리개선 방안. 2002년 한국유기농업학회학술발표 대회 pp. 3-27.
  6. 유덕기.윤성이.이주삼.조익환.안종호. 2006. 자연순환형 유기농업 표준모델개발. 농림부.
  7. 이주삼.조익환. 김성규.안종호. 1994. 유휴 논톤양에서 조사료 생산을 위한 적정 액상구 비 시용수준의 추정 I. 액상구비의 시용이 Reed canarygrass의 연 건물수량에 미치는 영향. 한초지. 14(1): 50-56.
  8. 조익환. 2003. 지역별 순환농업의 유형에 관한 연구. 한국유기농업학회지 11(3) : 91-108.
  9. 조익환. 2006. 유휴 논토양에서 가축분뇨의 시용이 Tall fescue의 잠재생산성에 미치는 영향. 한국유기농업학회지 14(1): 69-83.
  10. 조익환. 2008. 가축분뇨시용이 옥수수와 수수${\times}$수수교잡종의 생산성 및 사료가치에 미치는 영향. 한국유기농업학회지 16(1): 115-125.
  11. 조익환.황보순.이주삼. 2008. 가축분뇨시용이 하계사료작물의 생산성 및 유기가축 사육능력에 미치는 영향. 한국유기농업학회지 16(4): 421-434.
  12. 황경준 ․ 박형수 ․ 박남건 ․ 고문석 ․ 김문철 ․ 송상택. 2006. 미생물 발효제 처리 돈분액비 시용이 사료작물 생산성 및 토양의 이화학적 성상에 미치는 영향. 한초지. 26(4): 293-300.
  13. A. O. A. C. 1990. Official Methods of Analysis (15th Ed.). Association of Official Analytical Chemists. Washington D. C.
  14. Bracker, H. H. 1982. Gulle - StreBfaktor fur die Grunlandpflanzengesellschaft - Betriebswirtschftl. Mitteilg. der Landwirtschaftskammer Schlesweig-holstein, S. 21-28.
  15. Brockman, J. S., C. M. Rope, and M. T. Stevensm. 1971. A mathematical relationship between nitrogen input and output in cut grass sward. J. Br. Grassl. Soc. 26: 75-77. https://doi.org/10.1111/j.1365-2494.1971.tb00638.x
  16. Goering, H. K. and P. J. Van Soest. 1970. Forage fiber analysis. USDA Agric. Handbook No. 379, Washington, D. C.
  17. Herriott, J. B., D. A. Wells, and P. Crooks. 1965. Gulle as a grassland fertilizer (part 3), J. Br. Grassl. Soc. 20(2): 129-138. https://doi.org/10.1111/j.1365-2494.1965.tb00408.x
  18. Jo, I. H. 1989. Wirksamkeit der mineralischen Stickstoffdungung auf Ertrag und Pflanzenbestand des Grunlandes im osterreichischen Alpenraum. Diss. Univ. Bodenkultur. Wien.
  19. Jorgensen. N. A. and J. W. Crowley. 1972. Corn silage for Wisconsin cattle, Coop. Ext. Programs, Univ. of Wis. A1178.
  20. Linn, J. And N. Martin. 1989. Forage quality tests and interpretation. Univ. of Minnesota Ext. Serv. AG-FO-2637.
  21. Mengel P. 1984. Ernahrung und Stoffwechsel der Pflanze. 6 uberarbeitete Auflage.
  22. Nahm, K. H. 1992. Practical guide to feed, forage and water analysis. Yoohan Pub. 1-70.
  23. SAS. 2005. Statistical Analysis System ver., 8. 01. SAS Institute Inc., Cary, NC.
  24. Schechtner, G. 1978. Zur Wirksamkeit des Gullestickstoffs auf dem Grunland in Abhangigkeit vom Dungungsregime. Die Bodenkultur 29: 351-371.