• Title/Summary/Keyword: organic content

Search Result 3,965, Processing Time 0.034 seconds

The characteristics of aqueous ammonium-adsorption of biochar produced from Sudangrass (수단그라스 Biochar를 적용한 수중 암모니아성 질소(NH4-N) 흡착 특성)

  • Doyoon Ryu;Do-Yong Kim;Daegi Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2023
  • Increased nitrogen in the water system has become an important environmental problem around the world, as it causes eutrophication, algae bloom, and red tide, destroys the water system, and undermines water's self-purification. The most common form of nitrogen in the water system is ammonium ion (NH4+), and the largest portion of ammonium ions comes from wastewater. NH4+ is a major contributor to eutrophication, which calls for appropriate treatment and measures for ammonium removal. This study produced biochar by applying Sorghum × drummondii, a type of biomass with a great growth profile, analyzed the adsorption capacity of Sorghum × drummondii biochar produced from the changing carbonization temperature condition of 200 to 400℃ in the ammonium ion range of 10 to 100 ppm, and used the results to evaluate its potential as an adsorbent. Carbonization decomposed the chemical structure of Sorghum × drummondii and increased the content of carbon and fixed carbon in the biochar. The biochar's pH and electrical conductivity showed high adsorption potential for cations due to electrical conductivity as its pH and electrical conductivity increased along with higher carbonization temperature. Based on the results of an adsorption experiment, the biochar showed 54.5% and 17.4% in the maximum and minimum NH4-N removal efficiency as the concentration of NH4-N increased, and higher carbonization temperature facilitated the adsorption of pollutants due to the biochar's increased pores and specific surface area and subsequently improved NH4-N removal efficiency. FT-IR analysis showed that the overall surface functional groups decreased due to high temperature from carbonization.

Applications of a Hybrid System Coupled with Ultraviolet and Biofiltration for the Treatment of VOCs (휘발성유기화합물 처리를 위한 고도산화법과 고분자 담체 바이오필터 결합시스템의 적용)

  • Shin, Shoung Kyu;Song, Ji Hyeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.441-447
    • /
    • 2008
  • Volatile organic compounds (VOCs) emitted from various industrial sources commonly consist of biodegradable chemicals and recalcitrant compounds. Therefore, it is not effective to employ a single method to treat such mixtures. In this study, a novel hybrid system coupled with a ultraviolet (UV) photolysis reactor and a biofilter in a series was developed and evaluated using toluene and TCE as model VOCs. When only TCE was applied to the UV reactor, greater than 99% of TCE was degraded and the concentration of soluble byproducts from photo-oxidation reaction increased significantly. However, the toluene and TCE mixture was not effectively degraded by the UV photo-oxidation standalone process. The hybrid system showed high toluene removal efficiencies, and TCE degradation at a low toluene/TCE ratio was improved by UV pretreatment. These findings indicated that the UV photo-oxidation were effective for TCE degradation when the concentration of toluene in the mixture was relatively low. A restively high toluene content in the mixture resulted in an inhibition of TCE degradation. Thus, chemical interactions in both photo-oxidation and biodegradation need to be carefully considered to enhance overall performance of the hybrid system.

Complete Genome Analysis of Hyphantria cunea Nucleopolyhedrovirus Isolated in Korea (한국에서 분리한 미국흰불나방 핵다각체병 바이러스의 전장 유전체 분석)

  • Choi, Jae-Bang;Kim, Hyun-Soo;Woo, Soo-Dong
    • Korean Journal of Organic Agriculture
    • /
    • v.31 no.4
    • /
    • pp.395-412
    • /
    • 2023
  • The morphology and whole genome sequence of Hyphantria cunea nucleopolyhedrovirus W1 (HycuNPV-W1) isolated in Korea were analyzed for the use as an eco-friendly control agent against H. cunea. The HycuNPV-W1 had irregular tetrahedral polyhedra with a size of 1.5-2.2 ㎛ which is similar to that of previously reported HycuNPV isolated in Korea. As a result of whole viral genome analysis, HycuNPV-W1 was composed of 131,353 bp, which is 1,606 bp shorter than that of the previously reported HycuNPV. The G+C content was 45% and six of the homologous repeated regions were found, so there was no significant difference from the previous report. As a result of ORF analysis, HycuNPV-W1 contains total of 145 ORFs which is three ORFs less than the previous report, while two ORFs were exclusively found in HycuNPV-W1. The functions of these ORFs remains unclear and are not considered to have a significant influence on the characteristics of the HycuNPV. The genome vista analysis showed that the overall sequence identity between HycuNPV-W1 and the previously reported HycuNPV was very high. The whole genome of HycuNPV-W1 analyzed was found to be similar to those of the previously reported HycuNPV, however, it is supposed to be a novel resource in Korea with different isolate.

Organic Manure Compost and Inorganic Fertilizer Levels Affect Maize Growth in Barren Soils (척박지에서 퇴비와 무기질 비료가 옥수수 생장에 미치는 영향)

  • Kyung-Hee Kim;Gyu Won Kim;Sang-Ryong Lee;Byung-Moo Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.383-391
    • /
    • 2023
  • This study aimed to investigate the effect of manure compost content on early growth of maize in barren soils, to establish cultivation techniques that can increase maize yields on barren soils and to provide information on cultivation techniques. The results showed that in the manure compost treatments (1,500 and 1,000 kg/10a), yields increased with increasing amounts of manure compost compared to those of standard fertilization and decreased with decreasing amounts of manure compost. In addition, in fields with the no manure compost treatment (0 kg/10a), yields decreased overall compared to yields of fields treated with manure compost (1,500 and 1,000 kg/10a) regardless of the amount of fertilization. Maize growth was good irrespective of variety when compost was applied in high amounts to the barren soil, but poor initial growth was observed in all varieties in the untreated plots where no compost was applied to the barren soil. These results confirm that maize is affected by organic (manure compost) fertilizer in all aspects of its growth, and that a minimum of 1,000 kg/10a of manure compost and two-thirds (0.6) of chemical fertilizer should be applied to ensure stable maize yields, particularly when maize is grown on barren soils.

Effect of Media on the Biological Removal of Hydrogen Sulfide (생물학적 황화수소 제거에 미치는 담체의 영향에 관한 연구)

  • Jang, Hyun Sup;Lee, Tae Haeng;Kim, Chun Lee;Cho, Yong Beom;Oh, Min Hwan;Lee, Eun Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.2
    • /
    • pp.73-80
    • /
    • 2009
  • Biofilters use porous solid media to support microorganisms and allow access to the contaminants in the airflow. The characteristics of media used in biofilters vary greatly, and therefore it is important to select the appropriate media in order to obtain a large enough surface attachment area and uniform pore. This study was performed to compare hydrogen sulfide ($H_2S$) removal efficiencies of three biofilter media; coconut fiber, ceramic, and polyurethane. The biofilter packed with coconut fiber showed stable removal activity when inlet loading was changeable, and was restored rapidly when the moisture content decreased. However, the coconut fiber suffered from low durability. To cope with this problem a media of fibrinous polypropylene was developed to strengthen the durability of the coconut fiber. Biofilter column experiments using the fibrinous polypropylene media demonstrated over 99% of removal efficiencies at pH as low as 3 and 6 seconds of EBRT (empty bed gas residence time). Due to its superior physical characteristics, it is expected that the $H_2S$ treatment performance will increase when the new fibrinous polypropylne media is applied in commercial biofilter systems.

A Study on the Physico-Chemical Characteristics of Acid Sulfate Soil in Kimhae Plain (김해평야(金海平野)에 분포(分布)된 특이산성토(特異酸性土)(답)(沓)의 이화학적성질(理化學的性質)에 관(關)한 조사연구(調査硏究))

  • Park, N.J.;Park, Y.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.2 no.1
    • /
    • pp.15-26
    • /
    • 1969
  • The study on physico-chemical characteristics of the acid sulfate soil present in Kimhae plain was carried out with 28 surface and subsoils from lower and higher produtive area and two representative profile samples from the areas reclaimed a few decades ago and around 10 years ago respectively. 1. There are no differences in soil texture between lower and higher productive soils being mostly silty clay loam and silty clay. 2. Very significant differences in pH, degree of base saturation and extractable aluminium content are observed; lower pH, lower degree of base saturation and higher aluminium in the lower productive soils and subsoils. The pH and degree of base saturation of these soils are extremely low whereas aluminium content is very high compared to ordinary paddy soil. 3. Cation exchange capacity of these soils are slightly higher than ordinary paddy soils. In higher productive soils, exchangeable calcium and magnesium are of same order, whereas in lower productive soils magnesium content is appreciably higher than calcium. 4. Though the soil is derived from marine and estuarine sediment, the soluble salt content is not high. There are only few lower productive surface soils and subsoils having Ec values of the saturation extracts higher than 4 mmhos but lower than 9 mmhos/cm. 5. Organic matter content of these soils is a bit higher compared to ordinary paddy soils, but, nitrogen content is comparatively low. C/N ratio of these soils is around 12. 6. Sulfur content is considerably higher but oxidizable sulfur is found to be very low. Total sulfur is generally high in subsoils and lower productive soils. 7. Active iron and available silica are slightly higher than ordinary paddy soils but easily reducible manganese is very low. Almost no differences are also observed between lower and higher productive soils. 8. Available phosphorus content is extremely low in particular, regardless of higher or lower productive soils. 9. The two representative profiles from the area of earlier reclamation and recent one show that samples from earlier reclaimed area contain less amount of free acids, sulfur compounds, toxic aluminium and soluble salts etc. than the other. This indicate greater leaching and possible addition of lime for a longer period of time. 10. From the results obtained, it can be concluded the higher productivity of group I soils is due to the greater leaching and neutralisation of acidity by liming materials, It can also be concluded that the productivity of both types can be increased by addition of liming materials and improvement of drainage facilities.

  • PDF

Changes in Chemical Properties of Paddy Field Soils as Influenced by Regional Topography in Jeonbuk Province (지형특성에 따른 전북지역 논토양 화학성 변화)

  • Ahn, Byung-Koo;Lee, Jin-Ho;Kim, Kab-Cheol;Kim, Hyung-Gook;Jeong, Seong-Soo;Jeon, Hye-Won;Zhang, Yong-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.393-398
    • /
    • 2012
  • We investigated the changes in chemical properties of paddy field soils at 300 different sampling sites containing 4 topography in Jeonbuk province, Korea. The soil samples were collected 43.0% from local valley and fans, 39.3% from fluvio-marine deposits, 15.0% from alluvial plains, and 2.7% from diluvium sites. The optimal values of soil properties in the total soil samples were as follows: 65.3% of total samples in soil pH value, 48.3% of total samples in cation exchange capacity (CEC) value, and 22.3% of total samples in available phosphorus content, whereas the deficient values of soil properties were 63.3% of total samples in soil organic matter (SOM) content, 75.7% of total samples in available silicate content, and 61.3%, 51.0%, and 59.3% of total samples in exchangeable $K^+$, $Ca^{2+}$, and $Mg^{2+}$ concentrations, respectively. There were different soil types in the paddy fields: that is, 34.4% immature paddy and 33.6% sandy paddy in the local valley and fans, 57.8% sandy paddy in the alluvial plains, 47.4% normal paddy in the fluvio-marine deposits, and 75.7% immature paddy in the diluvium. Soil textures were also different: 53.5% loam in the local valley and fans, 37.8% sandy loam in the alluvial plains, and 55.1% silty loam in the fluvio-marine deposits. Soil pH and SOM contents were not different among the different topographical sampling sites. However, the mean value of available phosphorus content, 224 mg $kg^{-1}$, was exceeded optimal values in the diluvium. The contents of exchangeable cations were optimal in all the sites, except exchangeable $Ca^{2+}$ contents in the local valley and fans. The contents of available silicate ranged between 112 and 127 mg $kg^{-1}$ in all the sites, which were lower than optimal value. In addition, soil pH values were proportionally correlated to the order of available silicate, exchangeable $Ca^{2+}$, $Mg^{2+}$, $Na^+$, CEC, and exchangeable $K^+$. The contents of SOM were proportionally correlated to the order of CEC, available $P_2O_5$, exchangeable $Ca^{2+}$, and available silicate. The contents of heavy metals, Cd, Cr, Cu, Ni, Pb, and Zn, were only 10% of the threshold levels of the metals, and As content was about 20 to 30% of the threshold level.

Effect of varying the amount of water added on the characteristics of mash fermented using modified Nuruk for distilled-Soju production (가수량 변화가 개량누룩으로 발효한 증류식 소주용 술덧의 특성에 미치는 영향)

  • Choi, Han-Seok;Kim, Eu-Gene;Kang, Ji-Eun;Choi, Ji-Ho;Yeo, Soo-Hwan;Jeong, Seok-Tae
    • Food Science and Preservation
    • /
    • v.21 no.6
    • /
    • pp.908-916
    • /
    • 2014
  • This study was conducted to investigate the effects of varying the amount of water added on the characteristics of mash fermented using modified Nuruk for distilled-Soju production. As the amount of water added to the mash increased from 120 to 300%, the pH dropped from 4.6 to 4.2, resulting in reductions in the acidity from 6.0 to 5.2, in the amino acid level from 6.0 to 4.2, and in the soluble-solid content from 18.4 to $7.4^{\circ}Brix$. The alcohol concentration of the mash was highest at 17.6%, when 150% water was added, while the alcohol yield showed water-content-dependent increases of 59.7, 74.5, 80.8, 82.8, 89.4, and 90.6% with 120, 150, 180, 200, 250, and 300% water added, respectively. The values of the organic-acid content in the mash were 207.85, 222.38, 222.06, 204.56, 194.34, and 204.34 mg/100 mL, showing the highest values when 150 and 180% water was added. The total amino-acid content showed water-content-dependent decreases at 474.60, 317.32, 241.89, 244.51, 189.00, and 208.12 mg/100 mL, with arginine, alanine, glutamic acid, glycine, isoleucine, leucine, lysine, phenylalanine, proline, serine, tyrosine, and valine as the major components. The concentrations of isobutanol, isoamyl alcohol, 1-propanol, and 2-phenylalcohol were 154.88~182.62, 320.59~394.47, 91.50~170.91, and 108.93~144.26 ppm, respectively, while ethyl acetate, acetaldehyde, furfural, and butyric acid were also detected.

Changes in the Physicochemical and Antioxidant Characteristics during the Fermentation of Jujube Wine Using Hot Water Extract of Dried Jujube (건대추 열수추출물을 이용한 대추와인 발효중의 이화학 및 항산화적 특성 변화)

  • Eom, In-Ju;Choi, Jung-In;Kim, In-Ho;Kim, Tae-Hoon;Kim, Seong-Ho
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1298-1307
    • /
    • 2016
  • In the study, we investigated the optimum fermentation conditions as well as changes of physicochemical and antioxidant characteristics during the fermentation of jujube wine. The physicochemical characteristics of the jujube hot water extracts used in this study were a pH of 5.05, 0.01% acidity, and $6.5^{\circ}Brix$ concentration. For jujube wine fermentation, the optimal fermentation strain was selected among the isolated strains and the final chosen strain was identified as Saccharomyces cerevisiae, based on the 26S rRNA gene sequencing and similarity searching in GenBank DB. The jujube wine fermented with an initial $15^{\circ}Brix$ concentration of jujube extracts showed a maximum alcohol content of 13% and lower residual sugar concentration. Alcohol content during the jujube wine fermentation was increased after 3 days of fermentation, and no significantly difference after 6 days was found. The residual sugar concentration during the fermentation periods was significantly decreased with increasing alcohol content. The jujube wine properties at 12 days of fermentation were as follows: a pH of 4.34, acidity of 0.29%, alcohol content of 12.8%, and a residual sugar concentration of $8.70^{\circ}Brix$. The malic acid content in the organic acid of fermented jujube wine was significantly decreased during the fermentation proceeding, whereas the succinic acid and lactic acid contents were significantly increased. Antioxidant characteristics of the fermented jujube wine were appeared ABTS radical scavenging activity 45.80%, DPPH radical scavenging activity 61.89%, nitrite scavenging activity 91.95% and total polyphenol compound 3.69 mg/ml. In terms of consumer liking of the jujube wine by sensory evaluation, the color and overall acceptability of jujube wine were evaluated as more than average.

Effects of Application Levels of Fermented Cattle Manure on Forage Yield, Quality and Soil Characteristics in Orchardgrass at Jeju Area (제주지역 오차드그라스 초지에서 톱밥발효우분퇴비 시용수준이 목초의 생산성, 사료가치 및 토양특성에 미치는 영향)

  • Hwang, Kyung-Jun;Park, Nam-Geon;Park, Hyung-Soo;Lee, Chong-Eon;Kim, Nam-Young;Ko, Moon-Suk;Kim, Moon-Chul;Song, Sang-Teak
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • A study was conducted to determine the effects the of cattle manure application on forage yield, quality and soil in orchard grass pasture at the experimental field of Subtropical Animal Experiment Station, National Institute of Animal Science from 2008 to 2009. The experiment was arranged in a randomized complete block design with three replications. The treatment consisted of chemical fertilizer (CF N-200 kg/ha), cattle manure 50% (basis N, CM50%), CM100% (basis N), CM200% (basis N). The dry matter (DM) yield of CM200% was the highest among the other treatments. CF showed the highest average crude protein (CP) content by 12.4% and CM50% showed the lowest content by 11.0%. Average acid detergent fiber (ADF) and neutral detergent fiber (NDF) content were 30.4 and 69.7% respectively. All treatments have narrow range of total digestibility nutrient (TDN) from 64.0% to 69.1%. But there were big difference between treatment in forage nitrate content. Changes of physical and chemical properties of soils for applications of CF 200% and CM 200% was clearly in cattle manure application. Especially, CM application in pasture increased CF application with respect to soil pH, organic matter (OM), and avaliable phosphorous ($P_2O_5$) contents of soils.