DOI QR코드

DOI QR Code

The characteristics of aqueous ammonium-adsorption of biochar produced from Sudangrass

수단그라스 Biochar를 적용한 수중 암모니아성 질소(NH4-N) 흡착 특성

  • Doyoon Ryu (Department of Environmental and Chemical Convergence Engineering, Daegu University) ;
  • Do-Yong Kim (Department of Environmental Engineering, Mokpo National University) ;
  • Daegi Kim (Department of Environmental and Chemical Convergence Engineering, Daegu University)
  • 류도윤 (대구대학교 대학원 환경.화학융합공학과) ;
  • 김도용 (목포대학교 환경공학과) ;
  • 김대기 (대구대학교 대학원 환경.화학융합공학과)
  • Received : 2023.06.09
  • Accepted : 2023.06.14
  • Published : 2023.06.30

Abstract

Increased nitrogen in the water system has become an important environmental problem around the world, as it causes eutrophication, algae bloom, and red tide, destroys the water system, and undermines water's self-purification. The most common form of nitrogen in the water system is ammonium ion (NH4+), and the largest portion of ammonium ions comes from wastewater. NH4+ is a major contributor to eutrophication, which calls for appropriate treatment and measures for ammonium removal. This study produced biochar by applying Sorghum × drummondii, a type of biomass with a great growth profile, analyzed the adsorption capacity of Sorghum × drummondii biochar produced from the changing carbonization temperature condition of 200 to 400℃ in the ammonium ion range of 10 to 100 ppm, and used the results to evaluate its potential as an adsorbent. Carbonization decomposed the chemical structure of Sorghum × drummondii and increased the content of carbon and fixed carbon in the biochar. The biochar's pH and electrical conductivity showed high adsorption potential for cations due to electrical conductivity as its pH and electrical conductivity increased along with higher carbonization temperature. Based on the results of an adsorption experiment, the biochar showed 54.5% and 17.4% in the maximum and minimum NH4-N removal efficiency as the concentration of NH4-N increased, and higher carbonization temperature facilitated the adsorption of pollutants due to the biochar's increased pores and specific surface area and subsequently improved NH4-N removal efficiency. FT-IR analysis showed that the overall surface functional groups decreased due to high temperature from carbonization.

수계 내 질소의 증가는 부영양화나 녹조 및 적조현상을 유발하여 수계의 파괴 및 물의 자정능력을 저하시켜 전세계적으로 중요한 환경문제가 되었다. 수계 내 질소의 가장 일반적인 형태는 암모늄(NH4+)이온의 형태로 폐수로부터 유입되는 가장 많은 부분을 차지하고 있으며 부영양화의 주요 원인이 되고 있어 암모늄 제거에 있어 적절한 처리 및 방안이 필요하다. 본 연구에서는 생장력이 좋은 바이오매스 중 하나인 수단그라스를 적용하여 바이오차를 생산하였으며, 200℃-400℃ 탄화 온도 조건 변화에 따른 과정에서 생성된 수단그라스 바이오차를 활용하여 암모늄 이온, 10~100ppm 농도 변화에 따른 흡착능력 분석하였으며, 이 결과를 통해 흡착제로써 활용 가능성을 평가하고자 하였다. 탄화반응으로 인해 수단그라스의 화학구조가 분해되면서 바이오차의 탄소 및 고정 탄소함량이 증가하였다. 바이오차의 pH는 탄화 온도가 높을수록 pH와 전기전도도가 높아지면서 전기전도도로 인해 양이온에 대해 높은 흡착 가능성을 보였다. 흡착실험 결과를 바탕으로 NH4-N의 농도가 높아지면서 최대 54.5%, 최저 17.4%의 제거효율을 보였으며, 탄화 온도가 높을수록 바이오차의 기공 및 비표면적 증가로 인해 오염물질의 흡착이 용이해져 NH4-N의 제거효율이 높아졌다. FT-IR 분석 결과, 탄화반응의 고온으로 인해 전체적인 표면 작용기의 감소가 나타났다.

Keywords

Acknowledgement

본 결과물은 농림축산식품부 및 과학기술정보통신부, 농촌진흥청의 재원으로 농림식품기술기획평가원과 재단법인 스마트팜연구개발사업단의 스마트팜다부처패키지혁신기술개발사업의 지원을 받아 연구되었음(421037-03). 본 연구는 환경부의 폐자원에너지화 재활용 전문인력 양성사업으로부터 지원을 받았음(YL-WE-22-001).

References

  1. Mainstone, C. P. and Parr, W., "Phosphorus in river-ecology and management", Sci. Total Environ., 282, pp. 25~27. (2002). https://doi.org/10.1016/S0048-9697(01)00937-8
  2. Park, S. J., Shin, J. S. and Kawasaki, J., "Ammonia removal of activated carbons treated by anodic oxidation", J. Korea Ind. Eng. Chem., 14(4), pp. 418~422. (2003).
  3. Takaya, C. A., Fletcher, L. A., Singh, S., Anyikude, K. U. and Ross, A. B., "Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes", Chemosphere, 145, pp. 518~527. (2016). https://doi.org/10.1016/j.chemosphere.2015.11.052
  4. Tang, Y., Alam, M. S., Konhauser, K. O., Alessi, D. S., Xu, S., Tian, W. and Liu, Y., "Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater", J. Clean. Prod., 209, pp. 927~936. (2019). https://doi.org/10.1016/j.jclepro.2018.10.268
  5. Hu, X., Zhang, X., Ngo, H. H., Guo, W., Wen, H., Li, C., Zhang, Y. and Ma, C., "Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel", Sci. Total Environ., 707, p. 135544. (2020).
  6. He, Q., Zhou, J., Song, Q., Zhang, W., Wang, H. and Liu, L., "Elucidation of microbial characterization of aerobic granules in a sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal at varying carbon to phosphorus ratios", Bioresour. Technol., 241, pp. 127~133. (2017). https://doi.org/10.1016/j.biortech.2017.05.093
  7. Yang, Q., Wang, X., Luo, W., Sun, J., Xu, Q., Chen, F., Zhao, J., Wang, S., Yao, F., Wang, D., Li, X. and Zeng, G., "Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived fom waste activated sludge", Bioresour. Technol., 247, pp. 537~544. (2018). https://doi.org/10.1016/j.biortech.2017.09.136
  8. Luo, L., Wang, G., Shi, G., Zhang, M., Zhang, J., He, J., Xiao, Y., Tian, D., Zhang, Y., Deng, S., Zhou, W., Lan, T. and Deng, O., "The characterization of biochars derived from rice straw and swine manure, and their potential and risk in N and P removal from water", J. Environ. Manage., 245, pp. 1~7. (2019). https://doi.org/10.1016/j.jenvman.2019.05.072
  9. Vu, T. M., Trinh, V. T., Doan, D. P., Van, H. T., Nguyen, T. V., Vigneswaran, S. and Ngo, H. H., "Removing ammonium from waste water using modified corncob-biochar", Sci. Total Environ., 579, pp. 612~619. (2017). https://doi.org/10.1016/j.scitotenv.2016.11.050
  10. He, W., Gong, H., Fang, K., Peng, F. and Wang, K., "Revealing the effect of preparation parameters on zeolite adsorption performance for low and medium concentrations of ammonium", J. Envrion. Sci., 85, pp. 177~188. (2019). https://doi.org/10.1016/j.jes.2019.05.021
  11. Muhammad, A., Soares, A. and Jefferson, B., "The impact of background wastewater constituents on the selectivity and capacity of a hybrid ion exchange resin for phosphorus removal from wastewater", Chemosphere, 224, pp. 494~501. (2019). https://doi.org/10.1016/j.chemosphere.2019.01.085
  12. Mochizuki, T., Kubota, M., Matsuda, H. and Camacho, L. F. D., "Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation", Fuel Process. Technol., 144, pp. 164~169. (2016). https://doi.org/10.1016/j.fuproc.2015.12.012
  13. Woo, S. H., "Biochar for soil carbon sequestration", J. Clean Technol., 19(3), pp. 201~211. (2013). https://doi.org/10.7464/ksct.2013.19.3.201
  14. Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, T. and Ma, L. Q., "Mechanisms of metal sorption by biochas: biochar characteristics and modifications", Chemosphere, 178, pp. 466~478. (2017). https://doi.org/10.1016/j.chemosphere.2017.03.072
  15. Lim, J. E., Lee, S. S. and Ok, Y. S., "Efficiency of poultry manure biochar for stabilization of metals in contaminated soil", J. Appl. Biol. Chem., 58(1), pp. 39~50. (2015). https://doi.org/10.3839/jabc.2015.008
  16. Luo, Z., Yao, B., Yang, X., Wang, L., Xu, Z., Yan, X., Lin, T., Zhou, H. and Zhou, Y., "Novel insights into the adsorption of organic contaminants by biochar: A review", Chemosphere, 287, p. 132113. (2022).
  17. Jiang, T. Y., Jiang, J., Xu, R. K. and Li, Z., "Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar", Chemosphere, 89(3), pp. 249~256. (2012). https://doi.org/10.1016/j.chemosphere.2012.04.028
  18. Wang, Z., Shen, D., Shen, F. and Li, T., "Phosphate adsorption on lanthanum loaded biochar", Chemosphere, 150, pp. 1~7. (2016). https://doi.org/10.1016/j.chemosphere.2016.02.004
  19. Choi, Y. H., Moon, Y. H., Ahn, S. H., Yoon, Y. M., Cha, Y. L., Koo, B. C., Park, K. G., Han, H. S. and Kim, W. S., "Characteristics of sweet sorghum germplasm for bioethanol production in reclaimed soil", Korean J. Crop Sci., 57(4), pp. 384~388. (2012). https://doi.org/10.7740/kjcs.2012.57.4.384
  20. Mass, E. V., Poss, J. A. and Hoffman, G. J., "Salinity sensitivity of sorghum at three growth stages", Irrig. Sci., 7, pp. 1~11. (1986). https://doi.org/10.1007/BF00255690
  21. Jadia, C. D. and Fulekar, M. H., "Phytotoxicity and remediation of heavy metals by fibrous root grass (Sorghum)", J. Appl. Biosci., 10(1), pp. 491~499. (2008).
  22. Choi, I. W., Kim, S. U., Seo, D. C., Kang, B. H., Sohn, B. K., Rim, Y. S., Heo, J. S. and Cho, J. S., "Biosorption of heavy metals by biomass of seaweeds, Laminaria species, Ecklonia stolonifera, Gelidium amansii and undaria pinnatifida", Korean, J. Environ. Agri., 24(4), pp. 370~378. (2005). https://doi.org/10.5338/KJEA.2005.24.4.370
  23. Kim, J. T., Kim, S. H., Kim, H. J., "Charateristics of Physical and Adsorption of Korean Traditional Charcoal", Korean J. Sanitation., 21(4), pp. 77~86. (2006).
  24. Henry, J. G., Heinke, G. W. and Burton, I., Environmental science and engineering, NJ: Prentice Hall, 445(452), pp. 456~457. (1996).
  25. Miller, G. T. and Spoolman, S., Environmental science, Cengage Learning, (2012).
  26. Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y. and Yang, L., "Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties", Chem. Eng. J., 240, pp. 574~578. (2014). https://doi.org/10.1016/j.cej.2013.10.081
  27. Ryu, D. Y., Lee, J. K., Kim, D. Y., Jang, K. H., Lee, J. W. and Kim, D. G., "Enhancement of the Biofuel Characteristics of Empty Fruit Bunches through Hydrothermal Carbonization by Decreasing the Inorganic Matters", Energies, 15(21), p. 8154. (2022).