• Title/Summary/Keyword: organic coating

Search Result 682, Processing Time 0.026 seconds

Comparative Study on the Organic Solvent of IrO2-Ionomer Inks used for Spray Coating of Anode for Proton Exchange Membrane Water Electrolysis

  • Hye Young Jung;Yongseok Jun;Kwan-Young Lee;Hyun S. Park;Sung Ki Cho;Jong Hyun Jang
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.283-292
    • /
    • 2023
  • Currently, spray coating has attracted interest in the mass production of anode catalyst layers for proton exchange membrane water electrolysis (PEMWE). The solvent in the spray ink is a critical factor for the catalyst dispersion in ink, the microstructure of the catalyst layer, and the PEMWE performance. Herein, various pure organic solvents were examined as a substitute for conventional isopropanol-deionized water (IPA-DIW) mixture for ink solvent. Among the polar solvents that exhibited better IrO2 dispersion over nonpolar solvents, 2-butanol (2-BuOH) was selected as a suitable candidate. The PEMWE single cells were fabricated using 2-BuOH at various ionomer contents, spray nozzle types, and drying temperatures, and their performance was compared to the cells fabricated using a conventional IPA-DIW mixture. The PEMWE single cells with 2-BuOH solvent showed good performances comparable to the conventional IPA-DIW mixture case and highly durable performances under accelerated degradation tests.

Photolytic Characteristics of Ni-TiO2 Composite Coating from Electroless Plating (무전해 Ni-TiO2 복합도금을 이용한 광분해 특성 연구)

  • Choi, Chul-Young;Han, Gil-Soo;Jo, Il-Guk;Kim, Young-Seok;Kim, Yang-Do
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.157-160
    • /
    • 2009
  • Many fundamental studies have been carried out regarding waste water and hazardous gas treatments technologies using the photolysis effect of $TiO_2$. However, a permanent use of $TiO_2$ particles immobilized using organic or organic-inorganic binders is impossible. In this study, Ni-$TiO_2$ composite coating was produced by electroless plating to trap $TiO_2$ particles in the Ni coating layer. The electroless plating was performed in the bath solutions with three different concentrations of $TiO_2$ particles : 10 g/l, 20 g/l, and 40 g/l. The surface and photolytic characteristics of the coating layer was investigated by the use of SEM, a scratch tester, and an UV-Visible spectrophotometer. The results showed that the amounts of immobilized $TiO_2$ particles and the photolytic rate of the coating increased with the initial content of $TiO_2$ particles in the electroless bath. In addition, the photolytic rate of the Ni-$TiO_2$ composite coating was remarkably promoted by etching process in 10% HCl solution.

Fabrication of Spherical Microlens Array Using Needle Coating for Light Extraction of OLEDs (니들 코팅을 이용한 OLED 광 추출용 구형 마이크로렌즈 어레이 제작)

  • Kim, Juan;Shin, Youngkyun;Kim, Gieun;Hong, Songeun;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.25-31
    • /
    • 2022
  • By an aid of needle coating, we have fabricated a spherical microlens array using poly(methyl methacrylate) for potential applications in light extraction of organic light-emitting diodes. With an attempt to achieve high-density and high-aspect-ratio microlens arrays, we have investigated the coating behaviors by varying the material parameters such as the solute concentration and wettability of the poly(methyl methacrylate) solution and process parameters such as the dwell time of needle near the substrate, retract distance of needle from the substrate, and coating gap between the needle and substrate. Under the optimized coating conditions, it is demonstrated that high-aspect-ratio microlens arrays can be obtained using a coating solution with high solute concentration and a small amount of a hydrophobic solvent. It is found that the diameter and height of microlens array are decreased with increasing poly(methyl methacrylate) concentration, yet the overall aspect ratio is rather enhanced. By the addition of 5 wt% hexylamine in 35 wt% poly(methyl methacrylate) solution, we have achieved a spherical microlens with the height of 7.7 ㎛ and the width of 94.24 ㎛ (the aspect ratio of 0.082). To estimate the capability of light extraction by the microlens array, we have performed ray tracing simulations and demonstrated that the light extraction efficiency of organic light-emitting diode is expected to be enhanced up to 24%.

Preparation of UV-Curable Hydrophilic Coating Films Using Colloidal Silica (콜로이드 실리카를 이용한 UV 경화형 친수성 코팅 도막 제조)

  • Yang, Jun Ho;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.754-761
    • /
    • 2017
  • UV-curable hydrophilic coating solutions were prepared by mixing colloidal silica dispersed in alcohol with an acrylic monomer, pentaerythritol triacrylate (PETA). Hydrophilic coating films were also prepared by spin coating the hydrophilic coating solutions on PC substrates and UV curing for 10 minutes subsequently. The effect of the amount of colloidal silica in the coating solutions, which was varied from 10 g to 50 g, was investigated on the hydrophilic properties of UV-cured coating films. The results showed that the amount of colloidal silica had a great influence on the hydrophilic properties of UV-cured coating films and the coating film prepared with 30 g of colloidal silica showed a lowest contact angle of $37^{\circ}$ and an excellent pencil hardness of H.

Sn-Ag-Cu Solder Joint Properties on Plasma Coated Organic Surface Finishes and OSP (플라즈마 유기막과 OSP PCB 표면처리의 Sn-Ag-Cu 솔더 접합 특성 비교)

  • Lee, Tae-Young;Kim, Kyoung-Ho;Bang, Jung-Hwan;Park, Nam-Sun;Kim, Mok-Soon;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.25-29
    • /
    • 2014
  • Plasma organic thin film for PCB surface finish is a potential replacement of the conventional PCB finishes because of environment-friendly process, high corrosion-resistance and long shelf life over 1 year. In this study, solder joint properties of the plasma organic surface finish were estimated and compared with OSP surface finish. The plasma surface finish was deposited by chemical vapor deposition from fluorine-based precursors. The thickness of the plasma organic coating was 20 nm. Sn-3.0Ag-0.5Cu (SAC305) solder was used as solder joint materials. From a salt spray test, the plasma organic coating had higher corrosion resistance than the OSP surface finish. The spreadability of SAC305 on plasma organic coating was higher than that on OSP surface finish. SEM and TEM micrographs showed that the interfacial microstructure of the plasma surface finish sample were similar to that of the OSP sample. Solder joint strength of the plasma finish sample was also similar to that of the OSP finished sample.

Causes of Asphalt Waterproofing Membrane Dissolution due to the Addition of the Solvent in Hybrid Water-proofing System (복합방수공법에 있어서 용제 첨가에 따른 아스팔트층 용해원인에 관한 연구)

  • Kim, Dong-Bum;Seo, Hyun-Jae;Song, Je-Young;Kwak, Kyu-Sung;Bae, Kee-Sun;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.53-56
    • /
    • 2010
  • In this study, we conducted an impact assessment of the amount of volatile organic solvents addition on hybrid water-proofing system of urethane waterproof coating material and modified asphalt sheet. Also, we conducted a comparative assessment of whether modified asphalt sheet is dissolved or not and oil leakage by dissolution in order to perform a comparative analysis of characteristics of the impact on modified asphalt sheet according to the volatility of volatile organic solvents included in urethane waterproof coating material. The test was carried out by adding the same amount of organic solvents into each experimental group which is subject to volatility and non-volatility of organic solvents, respectively. The results of the test showed that in both experimental groups modified asphalt sheet was dissolved when adding over 10 percent of organic solvents regardless of volatility, and oil leakage observed only in the experimental group subject to volatility.

  • PDF

The Biological Functionality of Electro-Galvanized Steels Coated with a Hybrid Composite Containing Pyrethroid

  • Jo, Du-Hwan;Kim, Myung-Soo;Kim, Jong-Sang;Oh, Hyun-Woo
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.74-80
    • /
    • 2018
  • The electronic industries require environmentally-friendly and highly functional materials to enhance the quality of human life. Home appliances require insect repellent steels that work to protect household microwave ovens from incurring damage by insects such as fire ants and cockroaches in tropical regions. Thus, POSCO has developed new types of functional steels, coated with an array of organic-inorganic hybrid composites on the steel surface, to cover panels in microwave ovens and refrigerators. The composite solution uses a fine dispersion of hybrid solution with polymeric resin, inorganic and a pyrethroid additive in aqueous media. The hybrid composite solution coats the steel surface, by using a roll coater and is cured using an induction curing furnace on both the continuous galvanizing line and the electro-galvanizing line. The new steels were evaluated for quality performances, salt spray test for corrosion resistance and biological performance for both insect repellent and antimicrobial activity. The new steels with organic-inorganic composite coating exhibit extraordinarily biological functionalities, for both insect repellent and antimicrobial activities for short and long term tests. The composite-coating solution and experimental results are discussed and suggest that the molecular level dispersion of insecticide on the coating layer is key to biological functional performances.

Thermally Curable Organic-inorganic Hybrid Coatings on Ophthalmic Lenses by the Sol-Gel Method (졸-겔법에 의한 안경렌즈의 열경화형 유-무기 하이브리드 코팅)

  • Yu Dong-Sik;Lee Ji-Ho;Ha Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.465-470
    • /
    • 2006
  • Coating are needed on ophthalmic lenses to enhance both the mechanical durability of the relatively soft plastic surface and the optical performance of lenses. Organic-inorganic hybrid materials as molar ratio of 3-glycidoxypropyltrimethoxysilane(GPTS), methyltrimethoxysilane(MTMS) and tetraethyl orthosilicate(TEOS) were used to improve the surface characteristics and the optical properties on allyl diglycol carbonate lenses. Coating for these plastics were at $140^{\circ}C$ for 4hrs, applied using the sol-grl process flow-coating technique. The coated lens properties of transmittance, adhesion, pencil hardness, abrasion resistance, hot water resistance and chemical resistance were investigated. The optimum properties was obtained when the ratio of GPTS : MTMS : TEOS was 1:1:2, respectively.

  • PDF

Cytocompatible Coating of Individual Mammalian Cells with Tannic Acid-Zn Complex (타닌산-아연 복합체를 이용한 단일수준에서의 동물세포 코팅)

  • Lee, Juno
    • KSBB Journal
    • /
    • v.32 no.2
    • /
    • pp.160-167
    • /
    • 2017
  • Coating of individual cells with organic or inorganic materials has drawn a great deal of attention, because it provides the cells with physicochemical durability, which would contribute to the development of bioreactors, biosensor, and lab-on-a-chip, as well as to the fundamental studies in single cell-based biology. Although many strategies have been developed for coating of microbial cells, limited methods are available to coat mammalian cells because most mammalian cells do not have a robust membrane or exoskeleton. Instead, they are enclosed in a lipid bilayer, which is fluidic and vulnerable to changes in its environments. It is more difficult to treat mammalian cells in vitro than microbial cells because the surfaces of mammalian cells are not protected or reinforced by a tough coat. In this work, we report a cytocompatible and degradable nanocoat for mammalian cells. Three types of mammalian cells (HeLa cells, NIH 3T3 fibroblasts, and Jurkat T cells) were individually coated within metal-polyphenol. To maintain the viability of the mammalian cells, we performed the whole processes under strictly physiological culture conditions, and carefully selected nontoxic materials.

Emission Properties of Electro luminescent Devices using Poly(3-hexylthiophene) Deposited by LB Method (LB법으로 첨가한 Poly(3-hexylthiophene)을 발광층으로 사용한 전계발광소자의 발광특성)

  • 김주승;이경섭;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.757-761
    • /
    • 2001
  • We studied emitting properties of organic electroluminescent devices fabricated using the spin-coating and Langmuir-Blodgett(LB) technique. The LB technique has the advantage of precise control of the thickness better than spin-coating method. LB monolayer of poly(3-hexylthiophene)(P3HT) was deposited 27 layers onto the indium-tin-oxide(ITO) substrate as Y-type films by the vertical dipping method. In the absorption spectra, the λ$\_$max/ of P3HT-AA LB films and of spin-coating films showed about at 510, 545 and 590 nm corresponding to 2.43, 2.28, 2.10eV. And we observed that the turn-on voltage of devices deposited by LB method(10V) was higher than that of spin-coating method(8.5V) in voltage-current-luminance characteristic. In the logV-logJ characteristics of ITO/P3HT-AA LB/Al device, we confirmed that El device fabricated by LB method follows three conduction mechanisms: ohmic, space-charge-limited current(SCLC) conduction and trapped-carrier-limited space-charge current(TCLC) conduction.

  • PDF