DOI QR코드

DOI QR Code

Cytocompatible Coating of Individual Mammalian Cells with Tannic Acid-Zn Complex

타닌산-아연 복합체를 이용한 단일수준에서의 동물세포 코팅

  • Lee, Juno (The 5th R&D Institute 3rd Institute, Agency for Defense Development)
  • 이준오 (국방과학연구소 제5기술연구본부 3부)
  • Received : 2017.04.13
  • Accepted : 2017.06.20
  • Published : 2017.06.30

Abstract

Coating of individual cells with organic or inorganic materials has drawn a great deal of attention, because it provides the cells with physicochemical durability, which would contribute to the development of bioreactors, biosensor, and lab-on-a-chip, as well as to the fundamental studies in single cell-based biology. Although many strategies have been developed for coating of microbial cells, limited methods are available to coat mammalian cells because most mammalian cells do not have a robust membrane or exoskeleton. Instead, they are enclosed in a lipid bilayer, which is fluidic and vulnerable to changes in its environments. It is more difficult to treat mammalian cells in vitro than microbial cells because the surfaces of mammalian cells are not protected or reinforced by a tough coat. In this work, we report a cytocompatible and degradable nanocoat for mammalian cells. Three types of mammalian cells (HeLa cells, NIH 3T3 fibroblasts, and Jurkat T cells) were individually coated within metal-polyphenol. To maintain the viability of the mammalian cells, we performed the whole processes under strictly physiological culture conditions, and carefully selected nontoxic materials.

Keywords

References

  1. Carturan, G., R. Campostrini, S. Dire, and E. de Alteris (1989) Inorganic gels for immobilization of biocatalysts: Inclusion of invertase-active whole cells of yeast (Saccharomyces cerevisiae) into thin layers of $SiO_2$ gel deposited on glass sheets. J. Mol. Cat. 57: L13-L16. https://doi.org/10.1016/0304-5102(89)80121-X
  2. Finnie, K. S., J. R. Bartlett, and J. L. Woolfrey (2000) Encapsulation of sulfate-reducing bacteria in a silica host. J. Mater. Chem. 10: 1099-1101. https://doi.org/10.1039/a909350h
  3. Premkumar, J. R., O. Lev, R. Rosen, and S. Belkin (2001) Encapsulation of luminous recombinant E. coli in sol-gel silicate films. Adv. Mater. 13: 1773-1775. https://doi.org/10.1002/1521-4095(200112)13:23<1773::AID-ADMA1773>3.0.CO;2-Z
  4. Ferrer, M. L., L. Yuste, F. Rojo, and F. del Monte (2003) Biocompatible sol-gel route for encapsulation of living bacteria in organically modified silica matrixes. Chem. Mater. 15: 3614-3618. https://doi.org/10.1021/cm034372t
  5. Carturan, G., R. Dal Toso, S. Boninsegnab, and R. Dal Monte (2004) Encapsulation of functional cells by sol-gel silica: Actual progress and perspectives for cell therapy. J. Mater. Chem. 14: 2087-2098. https://doi.org/10.1039/B401450B
  6. Nassif, N., O. M. M. Bouvet, M. N. Rager, C. Roux, T. Coradin, and J. Livage (2002) Living bacteria in silica gels. Nat. Mater. 1: 42-44. https://doi.org/10.1038/nmat709
  7. Baca, H. K., C. Ashley, E. Carnes, D. Lopez, J. Flemming, D. Dunphy, S. Singh, Z. Chen, N. Liu, H. Fan, G. P. Lopez, S. M. Brozik, M. Werner-Washburne, and C. J. Brinker (2006) Cell-directed assembly of lipid-silica nanostructures providing extended cell viability. Science 313: 337-341. https://doi.org/10.1126/science.1126590
  8. Fakhrullin, R. F., A. I. Zamaleeva, R. T. Minullina, S. A. Konnova, and V. N. Paunov (2012) Cyborg cells: Functionalisation of living cells with polymers and nanomaterials. Chem. Soc. Rev. 1: 4189-4206.
  9. Fakhrullin, R. F. and Y. M. Lvov (2012) "Face-lifting" and "Makeup" for microorganisms: layer-by-layer polyelectrolyte nanocoating. ACS Nano 6: 4557-4564. https://doi.org/10.1021/nn301776y
  10. Yang, S. H., D. Hong, J. Lee, E. H. Ko, and I. S. Choi (2013) Artificial spores: Cytocompatible encapsulation of individual living-cells within thin, tough artificial-shells. Small 1: 178-186.
  11. Hong, D., M. Park, S. H. Yang, J. Lee, Y.-G. Kim, and I. S. Choi (2013) Artificial spores: Cytoprotective nanoencapsulation of living cells. Trends Biotechnol. 31: 442-447. https://doi.org/10.1016/j.tibtech.2013.05.009
  12. Park, J. H., S. H. Yang, J. Lee, E. H. Ko, D. Hong, and I. S. Choi (2014) Nanocoating of single cells: From maintenance of cell viability to manipulation of cellular activities. Adv. Mater. 26: 2001-2010. https://doi.org/10.1002/adma.201304568
  13. Yang, S. H., K.-B. Lee, B. Kong, J.-H. Kim, H.-S. Kim, and I. S. Choi (2009) Biomimetic encapsulation of individual cells with silica. Angew. Chem. Int. Ed. 48: 9160-9163. https://doi.org/10.1002/anie.200903010
  14. Xiong, W., Z. Yang, H. Zhai, G. Wang, X. Xu, W. Ma, and R. Tang (2013) Alleviation of high light-induced photoinhibition in cyanobacteria by artificially conferred biosilica shells. Chem. Commun. 49: 7525-7527. https://doi.org/10.1039/c3cc42766h
  15. Hong, D., H. Lee, E. H. Ko, J. Lee, H. Cho, M. Park, S. H. Yang, and I. S. Choi (2015) Organic/inorganic double-layered shells for multiple cytoprotection of individual living cells. Chem. Sci. 6: 203-208. https://doi.org/10.1039/C4SC02789B
  16. Park, J. H., I. S. Choi, and S. H. Yang (2015) Peptide-catalyzed, bioinspired silicification for single-cell encapsulation in the imidazole-buffered system. Chem. Commun. 51: 5523-5525. https://doi.org/10.1039/C4CC08544B
  17. Ko, E. H., Y. Yoon, J. H. Park, S. H. Yang, D. Hong, K.-B. Lee, H. K. Shon, T. G. Lee, and I. S. Choi (2013) Bioinspired, cytocompatible mineralization of silica-titania composites: Thermo-protective nanoshell formation for individual chlorella cells. Angew. Chem. Int. Ed. 52: 12279-12282. https://doi.org/10.1002/anie.201305081
  18. Wang, B., P. Liu, W. jiang, H. Pan, X. Xu, and R. Tang (2008) Yeast cells with an artificial mineral shell: Protection and modification of living cells by biomimetic mineralization. Angew. Chem. Int. Ed. 47: 3560-3564. https://doi.org/10.1002/anie.200704718
  19. Fakhrullin, R. F. and R. T. Minullina (2009) Hybrid cellular-inorganic core-shell microparticles: Encapsulation of individual living cells in calcium carbonate microshells. Langmuir 25: 6617-6621. https://doi.org/10.1021/la901395z
  20. Diaspro, A., D. Silvano, S. Krol, O. Cavalleri, and A. Gliozzi (2002) Single living cell encapsulation in nano-organized polyelectrolyte shells. Langmuir 18: 5047-5050. https://doi.org/10.1021/la025646e
  21. Lee, J., S. H. Yang, S.-P. Hong, D. Hong, H. Lee, H.-Y. Lee, Y.-G. Kim, and I. S. Choi (2013) Chemical control of yeast cell-division by cross-linked shells of catechol-grafted polyelectrolyte multilayers. Macromol. Rapid Commun. 34: 1351-1356. https://doi.org/10.1002/marc.201300444
  22. Drachuk, I., O. Shchepelina, M. Lisunova, S. Harbaugh, N. Kelley-Loughnane, M. Stone, and V. V. Tsukruk (2012) pH-responsive layer-by-layer nanoshells for direct regulation of cell activity. ACS Nano 6: 4266-4278. https://doi.org/10.1021/nn3008355
  23. Yang, S. H., S. M. Kang, K.-B. Lee, T. D. Chung, H. Lee, and I. S. Choi (2011) Mussel-inspired encapsulation and functionalization of individual yeast cells. J. Am. Chem. Soc. 133: 2795-2797. https://doi.org/10.1021/ja1100189
  24. Lee, J., J. Choi, J. H. Park, M.-H. Kim, D. Hong, H. Cho, S. H. Yang, and I. S. Choi (2014) Cytoprotective silica coating of individual mammalian cells through bioinspired silicification. Angew. Chem. Int. Ed. 53: 8056-8059. https://doi.org/10.1002/anie.201402280
  25. Lee, J., I. S. Choi, and S. H. Yang (2015) Cytocompatibility optimization for silica coating of individual HeLa cells. Bull. Korean Chem. Soc. 36: 1278-1281.
  26. Lee, J., H. Cho, J. Choi, D. Hong, D. Kim, J. H. Park, S. H. Yang, and I. S. Choi (2015) Chemical sporulation and germination: Cytoprotective nanocoating of individual mammalian cells with a degradable Tannic Acid-FeIII complex. Nanoscale 7: 18918-18922. https://doi.org/10.1039/C5NR05573C
  27. Park, J. H., K. Kim, J. Lee, J. Y. Choi, D. Hong, S. H. Yang, F. Caruso, Y. Lee, and I. S. Choi (2014) A cytoprotective and degradable metal-polyphenol nanoshell for single-cell encapsulation. Angew. Chem. Int. Ed. 53: 12420-12425.
  28. Guo, J. Y. Ping, H. Ejima, K. Alt, M. Meissner, J. J. Richardson, Y. Yan, K. Peter, D. V. Elverfeldt, C. E. Hagemeyer, and F. Caruso (2014) Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew. Chem. Int. Ed. 53: 5546-5551. https://doi.org/10.1002/anie.201311136
  29. Rahim, M. A., H. Ejima, K. L. Cho, K. Kempe, M. Müllner, J. P. Best, and F. Caruso (2014) Coordination-driven multistep assembly of metal-polyphenol films and capsules. Chem. Mater. 26: 1645-1653. https://doi.org/10.1021/cm403903m
  30. Ejima, H., J. J. Richardson, K. Liang, J. P. Best, M. P. V. Koeverden, G. K. Such, J. Cui, and F. Caruso (2013) One-step assembly of coordination complexes for versatile film and particle engineering. Science 342: 154-157. https://doi.org/10.1126/science.342.6154.15-d
  31. Slieman, T. A. and W. L. Nicholson (2001) Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation. Appl. Environ. Microbiol. 67: 1274-1279. https://doi.org/10.1128/AEM.67.3.1274-1279.2001
  32. Sinha, R. P. and D.-P. Hader (2002) UV-induced DNA damage and repair: A review Photochem. Photobiol. Sci. 1: 225-236. https://doi.org/10.1039/b201230h