• Title/Summary/Keyword: organic carbon concentration

Search Result 782, Processing Time 0.03 seconds

Nitrogen Removal from Wastewaters by Microalgae Without Consuming Organic Carbon Sources

  • Lee, Kwang-Yong;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.979-985
    • /
    • 2002
  • The possibility of microalgal nitrogen treatment was tested in wastewaters with a low carbon/nitrogen (C/N) ratio. Chlorella kessleri was cultured in the two different artificial wastewaters with nitrate as a nitrogen source: one contained glucose for an organic carbon source and the other without organic carbon sources. The growth rates of the two cultures were almost identical when the aeration rate was over 1 vvm. These results suggest that microalgae could successfully remove nitrogen from wastewater, as far as the mass transfer of $CO_2$, was not limited. Nitrate was successfully reduced to below 2 mg $NO_3^-$-N/ml from the initial nitrate concentration of 140 mg $NO_3^-$-N/ml in 10 days, even in the wastewater with no organic carbon source. Similar results were obtained when ammonium was used as the sole nitrogen source instead of nitrate. Higher concentrations of nitrogen of 140, 280, 560 and 1,400 mg/ml were also tested and similar amounts of nitrogen were removed by algal cultures without showing any substrate inhibition.

Weathering of coal and kerogen : implications on the geochmical carbon and oxygen cycle and the environmental geochemical reactions (탄질 유기물과 케로젠의 풍화 : 탄소와 산소의 지화학적 순환 및 환경화학적 반응에 미치는 영향)

  • 장수범
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.101-111
    • /
    • 1999
  • Sedimentary organic matter, exposed to continental surficial environment, reacts with oxygen supplied from the atmosphee and forms carbon-containing oxidation products. Knowledge of the rate and mechanisms of sedimentary organic matter weathering is important because it is one of the major controls on atmospheric oxygen level through geologic time. Under the abiological conditions, the oxidation rate of coal organic matter by molecular oxygen is enhanced by the increase of oxygen concentration and temperature. At ambient temperature and pressure, aqueous coal oxidation results in the formation of dissolved $CO_2$ dissolved organic carbon and solid oxidation products which are all quantitatively significant reaction products. The effects of pH, ultraviolet light, and microbial activity on the weathering of sedimentary organic matter are poorly contrained. Based on the results of geochmical and environmental studies, it is believed that the photochemical reaction should play an important role in the decomposition and oxidation of sedimentary organic matter removed from the weathering profile. At higher pH conditions, the production rate of DOC can be accelerated due to base catalysis. These high molecular weight oranic matter can react with man-made pollutants such as heavy metal ions via adsorption/desorption or ion exchange reactions. The effect of microbial activity on the oxidative weathering of sedimentary organic matter is poorly understood and remains to be studied.

  • PDF

Mineralogical and Geochemical Changes During the Reaction of Cr(VI) with Organic Carbon (6가 크롬과 유기탄소와의 반응에 따른 광물학적 지구화학적 변화)

  • Kim, Yeongkyoo;Park, Young-Gyu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.151-160
    • /
    • 2013
  • A column experiment was carried out to study the reaction of Cr(VI) with organic carbon. Chemical analysis for the effluent collected at different times after the reaction of Cr(VI) with organic carbon in compost and SEM observation for the solid samples remaining after the reaction were conducted. Cr(VI) supplied to the column was not detected in the effluent from column at initial stage, but the concentration of Cr(VI) increased abruptly and maintained the initial supplied concentration (20 mg/kg), indicating that Cr(VI) was effectively removed from the solution at the first state. In general, the concentrations of cations and anions with the exception of $PO_4$ increased and decreased again. Considering that most of these ions were not detected or showed very low concentration, these ions are considered to originate from the organic carbon in the column. SEM observation showed that Cr was coprecipitated with Fe on the surface of organic carbon with small amount of other metals such as Mn, No, and Co. This indicated that on the reduction condition on the organic carbon, Cr(VI) was reduced to $Cr(OH)_3$ and coprecipitated with $Fe(OH)_3$, and that Fe is very important in the precipitation of Cr. After the soluble Fe and Mn are not dissolved any more, $Cr(OH)_3$ is not precipitated. Different from other ions, the concentrations of $PO_4$ decreased and increased, which was thought to be the result of the release of $PO_4$ from organic carbon and sorption on the precipitates. After the maximum sorption on the precipitates and no further release of Fe, the concentration of $PO_4$ returns to its original value measured for the ones released from the organic carbon.

Comparison of Diesel Exhaust Particle Concentration between Large Above-Underground Parking Lots (수도권 일부 대형상가 지상주차장 및 지하주차장의 공기중 디젤엔진배출 입자상물질의 공기중 농도 비교)

  • Kim, Boowook;Song, Dong-Woo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.323-332
    • /
    • 2013
  • Objectives: This study was conducted in order to investigate the diesel exhaust particle(DEP) concentrations in the thirteen parking lots of large shopping complex. Methods: The real-time black carbon(BC) concentration was determined using an Aethalometer, and elemental/organic carbon concentration was determined according to the method of the National Institute for Occupational Safety and Health(NIOSH) 5040. The particle number concentration(NC), lung deposited surface area concentration(LDSA) and geometric mean diameter(GMD) were determined using a DiSCmini aerosol monitor. Results: The average concentration of BC, EC, OC, NC, LDSA and GMD were $19.1{\mu}g/m^3$, $12.6{\mu}g/m^3$, $51.5{\mu}g/m^3$, $94,000particles/cm^{-3}$, $298{\mu}m^2/cm^{-3}$ and 57 nm in all parking lots, respectively, approximately 3-fold higher than those found in the urban outdoor. The average concentration of BC were $21.3{\mu}g/m^3$ in underground parking lots, 3-fold higher than above parking lots. Conclusions: Therefore, the parking lots at the large shopping complex can be considered a potentially dangerous environment with a high concentration of DEP nanoparticles.

Effect of Light/dark Cycles on Wastewater Treatments by Microalgae

  • Lee, Kwangyong;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.3
    • /
    • pp.194-199
    • /
    • 2001
  • Chlorella kessleri cultivated in artificial wastewater using diurnal illumination of 12h light/12h dark (L/D) cycles. The inoculum density was 10(sup)5 cells/mL and the irradiance in light cycle was 45$\mu$mol㎡s(sup)-1 at the culture surface. As a control culture, another set of flasks was cultivated under continuous illumination. Regardless of the illumination scheme, the total organic carbon (TOC) and chemical oxygen demand (COD) was reduced below 20% of the initial concentration within a day. However, cell concentration under the L/D lighting scheme was lower tan that under the continuous illuminating scheme. Thus the specific removal rate of organic carbon under L/D cycles was higher than that under continuous illumination. This result suggested that C. kessleri grew chemoorganotrophically in the dark periods. After 3 days, nitrate was reduced to 136.5 and 154.1mg NO$_3$-N/L from 168.1mg NO$_3$-N/L under continuous illumination and under diurnal cycles, respectively. These results indicate nitrate removal efficiency under continuous light was better than that under diurnal cycles. High-density algal cultures using optimized photobioreactors with diurnal cycles will save energy and improve organic carbon sources removal.

  • PDF

Origins and Paleoceanographic Significance of Layered Diatom Ooze from Bransfield Strait in the Northern Antarctic Peninsula around 2.5 kyrs BP

  • Yoon, Ho-Il;Kim, Yea-Dong;Park, Byong-Kwon;Kang, Cheon-Yun;Bae, Sung-Ho;Yoo, Kyu-Chul
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.301-311
    • /
    • 2002
  • We used diatom and porewater data of two piston cores from the central subbasin and one from the western subbasin in the Bransfield Strait in the northern Antarctic Peninsula to elucidate the depositional mechanism of the layered diatom ooze. The layered diatom ooze is characterized by an abundance of organic carbon, biogenic silica, sulfde sulfur, and lower porewater sulfate concentration. This lack of pore-water sulfate concentration in the diatom ooze interval may reflect development of reducing micro-environment in which bacterially mediated sulfate reduction occurred. The negative relationship between the total organic carbon and sulfate contents, however, indicates that sulfate reduction was partly taking place but does not control organic carbon preservation in this unit. Rather, well-preserved Chaetoceros resting spores in the layered diatom ooze indicate a rapid sedimentation of the diatom as a result of repetitive iceedge blooms on the Bransfield shelf during the cold period (around 2500 yrs BP) when the permanent seaice existed on the shelf, During this period, it is expected that the downslope-flowing cold and dense water was also formed on the Bransfield shelf as a result of sea ice formation, playing an important role for the formation of layered diatom ooze in the Bransfield subbasins.

Development of Regression Models for Estimation of Unmeasured Dissolved Organic Carbon Concentrations in Mixed Land-use Watersheds (복합토지이용 유역의 수질 관리를 위한 미측정 용존유기탄소 농도 추정)

  • Min Kyeong Park;Jin a Beom;Minhyuk Jeung;Ji Yeon Jeong;Kwang Sik Yoon
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.2
    • /
    • pp.162-174
    • /
    • 2023
  • In order to prevent water pollution caused by organic matter, Total Organic Carbon(TOC) has been adopted indicator and monitored. TOC can be divided into Dissolved Organic Carbon(DOC) and Particulate Organic Carbon(POC). POC is largely precipitated and removed during stream flow, which making DOC environmentally significant. However, there are lack of studies to define spatio-temporal distributions of DOC in stream affected by various land use. Therefore, it is necessary to estimate the past DOC concentration using other water quality indicators to evaluate status of watershed management. In this study, DOC was estimated by correlation and regression analysis using three different organic matter indicators monitored in mixed land-use watersheds. The results of correlation analysis showed that DOC has the highest correlation with TOC. Based on the results of the correlation analysis, the single- and multiple-regression models were developed using Biochemical Oxygen Demand(BOD), Chemical Oxygen Demand(COD), and TOC. The results of the prediction accuracy for three different regression models showed that the single-regression model with TOC was better than those of the other multiple-regression models. The trend analysis using extended average concentration DOC data shows that DOC tends to decrease reflecting watershed management. This study could contribute to assessment and management of organic water pollution in mixed land-use watershed by suggesting methods for assessment of unmeasured DOC concentration.

The effect of iron ions on the reducing of natural organic matter and THMFP in ozonation (오존 처리 시 철 2가 이온이 자연유기물질과 트리할로메탄 저감에 미치는 영향)

  • Kwak, Yeonwoo;Lee, Seulki;Jang, Gyuhwan;Hong, Seongho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.6
    • /
    • pp.447-456
    • /
    • 2019
  • This study focused on natural organic matter and trihalomethane removal by ozonation with various ferrous concentration in surface water. Ozonation is more affected by injection concentration than reaction time. dissolved organic carbon removal rates in ozonation increased with the increase in ferrous concentration. The highest removal was obtained at 6 mg/L of ferrous concentration. When 1 mg/L of ferrous was added with 2 mg/L of ozone concentration, it was found to be a rapid decrease in specific ultraviolet absorbance at the beginning of the reaction because ferrous acts as a catalyst for producing hydroxyl radical in ozonation. As ozone concentration increased, trihalomethane formation potential decreased. When 2 mg/L of ozone was injected, trihalomethane formation potential was shown to decrease and then increase again with the increase in ferrous concentration.

The Characteristics of Secondary Carbonaceous Species within PM10 and PM2.5 in Seoul and Incheon Area (서울과 인천지역 PM10 과 PM2.5 중 2차생성 탄소성분 추정)

  • Park Jin Soo;Kim Shin Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.131-140
    • /
    • 2005
  • To investigate secondary carbonaceous species within PM$_{10}$ and PM$_{2.5}$ in Seoul urban Metropolitan Area (SMA), Korea. atmospheric particulate matters samples were collected at two sites of SMA at UOS (The University Of Seoul station) sites and IHU (InHa University of Incheon station) during the period of 4 to 14 January and 12 to 22 May, 11 to 15 August 2004, and their characteristics were qualitatively discussed. during January and May and August of 2004. Daily average mass concentration 0.095 mg/㎥ in PM$_{10}$ and 0.053 mg/㎥ in PM$_{2.5}$ for mass respectively. were observed in SMA. The concentrations of carbonaceous species contributed 18.4% and 16.4% of PM$_{2.5}$ and PM$_{10}$ during the sampling period, respectively, of which OC accounted for 68% and 52% more of the total carbon (TC). OC and EC concentrations and their mass percentages were higher in PM$_{2.5}$ than in PM$_{10}$ which could be attributed to generation process. Organic aerosols would constitute up to 38% of PM$_{2.5}$ based on the evaluation of 1.6 for the ratio of OC to organic particulate. Secondary organic carbon (SOC) were estimated to be more than 13% and up to 68% of total OC based on the minimum OC/EC ratio of 1.06/1.11 using least square method. Comparisons of OC and EC with trace elements. As results of carbonaceous species analysis, the dominant factor in view of fine particle (PM$_{10}$/PM$_{2.5}$) is primary emission source such as mobile, fossil fuel combustion etc. during winter time in SMA. But in summer periods, remarkable fine particle increasing factor was secondary organic carbon dependent to photochemical reaction. reaction.n. reaction.

Nitrogen removal from wastewaters without carbon sources using microalgae

  • Lee, Kwang-Yong;Lee, Choul-Gyun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.553-556
    • /
    • 2000
  • Possibility of biological nitrogen treatment was tested in wastewaters with low C/N ratio. Chlorella kessleri was inoculated at $10^6\;cell/mL$ of initial density in two different artificial wastewaters: one that contained glucose for organic carbon source and the other without carbon source. Nitrate could be successfully reduced below 10 mg $NO_3/mL$ from initial nitrate concentration of 560 mg $NO_3/mL$ in 10 days even in the wastewater without carbon source, This 98% removal of nitrate without extra organic carbon source lights up the future of biological wastewater treatment, where the insufficient ability of nitrogen removal is a major problem.

  • PDF