• Title/Summary/Keyword: organic acid production

Search Result 738, Processing Time 0.023 seconds

Bifidogenic Effects of the Oral Administration of Fly Maggot Extract on Organic Acid, Cecal Microorganisms, Thymus and Spleen Weights, and Blood Lipids in Rats (파리유충 추출물이 랫드의 혈액지질, 면역세포 중량, 맹장 미생물 및 유기산 변화에 미치는 비피더스 활성효과)

  • Park, Byung-Sung;Park, Sang-Oh
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.784-790
    • /
    • 2014
  • Housefly (Musca domestica L.) maggots are used as biomedical material. Ethanolic extracts of fly maggot (EM) were orally administered to male rats at levels of 0 (control group), 4.0, 6.0, and 8.0 mg per 100 g live weight for 40 days. Serum triglycerides, total cholesterol, and LDL-C decreased by 17.90, 17.60, and 16.37%, respectively, whereas HDL-C increased by 20.48% in the EM group compared with these parameters in a control group (p<0.05). Thymus and spleen weights dose-dependently increased by 21.42% and 21.42%, respectively, but abdominal fat decreased by 39.66% after EM administration compared with that in the control group (p<0.05). IgG, IgA, and IgM increased 35.14, 68.65, and 190.16%, respectively, in the EM groups compared to the control group (p<0.05). Bifidobacterium and Lactobacillus increased by 41.68% and 35.55%, respectively, in the EM groups compared with the control group, and Bacteroides, Clostridium, Escherichia, and Streptococcus decreased by 24.96, 46.37, 25.00, and 34.05%, respectively, in the EM groups compared with the control group (p<0.05). Compared with the control group, total organic acids, acetic acid, and propionic acid increased by 31.11, 49.34, and 24.88%, whereas butyric acid, isobutyric acid, valeric acid, and isovaleric acid decreased by 30.79, 72.64, 32.90, and 63.16% respectively, in the EM groups (p<0.05). These results suggest that EM has a bifidogenic effect on immune cell development, blood lipid levels, and abdominal fat reduction by increasing the production of organic acid and numbers of cecal microorganisms in animals.

Effect of Organic Gemanium, Oligosaccharide and Starters on Fermentation of Fresh Kimchi Juice (김치즙액의 발효에 미치는 유기게르마늄, 올리고당 및 Starter의 영향)

  • Park, Seok-Kyu;Seo, Kwon-Il;Shon, Mi-Yae
    • Food Science and Preservation
    • /
    • v.6 no.4
    • /
    • pp.514-520
    • /
    • 1999
  • Changes in pH, titratable acidity, CO$_2$production, reducing sugar, and lactic acid bacteria of fresh kimchi juice supplemented with combinations of 3 lactic acid bacteria and germanium(Ge)-132 or fructooligosaccharide(FO) during fermentation at 30$^{\circ}C$ were investigated to assess the potential for extending the shelf life and enhancing the functional properties in kimchi. In kimchi juice containing Ge-132, sample(I) (inoculated with a mixture of bacteriocin-producing SNF-13 strain and E. faecium) exhibited that the amounts of organic acid and evolved CO$_2$gas were lower than those of the other starter samples(II-IV). The growth of lactic acid bacteria naturally present in kimchi juice, particularly Lb. plantarum and Leu. mesentroides, may be inhibited due to competition of the isolated SNF-13 strain and E. faecium by Ge-132. During fermentation of kimchi juice containing FO sugar, the contents of organic acid and evolved CO$_2$gas On juice broth with 4 starters were predominantly higher than those of control and Ge-132 groups, and then the growth of lactic acid bacteria originated from kimchi ingredients was thought to be markedly accelerated. Our results indicated that functional properties like the extension of shelf life and increase of biological activity in kimchi were enhanced by adding Ge-132 and bacterium-producing lactic acid bacterium, which were resistant to organic acid and stimulated by Ge-132.

  • PDF

주정증류 폐액을 이용한 Actinobacillus sp. EL-9로부터 Poly-$\beta$-Hydroxybutyrate의 생산 및 폐약의 처리

  • 손홍주;이상준
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.352-356
    • /
    • 1996
  • Alcoholic distillery wastes are utilized as dual purposes to produce PHB in lower production cost and to reduce the amount of waste to be treated. In this study, various attempts were made to increase PHB production under various conditions by Actinobacillus sp. EL-9 in a shaker culture. The addition of glucose, NH$_{4}$NO$_{3}$ to alcoholic distillery wastes slightly promoted cell mass and PHB production. Enzyme hydrolysis of alcoholic distillery wastes increased the production of PHB than that of untreated waste and acid hydrolysis treatment. The PHB weight in alcoholic distillery wastes was 1.91 g/l. Fermentation process of PHB production reduced the amount of COD value up to 54%, which reduced organic loading rate and capacity of activated sludge system.

  • PDF

Effect of Dissolved Oxygen on the Growth of Azotobacter vinelandii UWD and Production of PHBV in the Mixture of Organic Acids and Glucose (유기산 및 포도당 혼합배지에서 Azotobacter vinelandii UWD의 생장 및 PHBV 생산에 대한 용존산소의 영향)

  • 박창호
    • KSBB Journal
    • /
    • v.13 no.6
    • /
    • pp.675-680
    • /
    • 1998
  • In both 7L and 20L fermentor experiments the level of dissolved oxygen (D.O) strongly affected growth and PHBV production of Azotobacter vinelandii UWD. A higher D.O. increased carbon substrate consumption rate and cell growth rate with a similar residual biomass production. However, a lower D.O. was a much better condition for PHBV production. In a 20L fermentor experiments controlled at 5% D.O. cell growth rate was about twice faster(0.555 hr-1 and 0.260 hr-1 at the acid and the glucose phase, respectively) with an equal amount(4.5 g/L) of residual biomass production. However, PHBV content in the cell(62.3 wt%) increased 17.3 times at 1% D.O.

  • PDF

Influence of Substrate Concentration and Hydraulic Retention Time on the Hydrogen Production Using Anaerobic Microflora (혐기성 미생물을 이용한 수소생산에 있어서 기질농도 및 수리학적 체류시간의 영향)

  • Ko, In-Beom;Shin, Hang-Sik;Lee, Yong-Doo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.911-916
    • /
    • 2006
  • The influence of substrate concentration and hydraulic retention time(HRT) on the hydrogen production by anaerobic microflora was investigated by conducting three series of continuous experiments the individual influences of substrate concentration and HRT. In series I, substrate concentration was increased from 3 to 27 g-glucose/L keeping HRT at 8 hr. Series II and III carried out same condition with series I at HRT of 16 hr and 24 hr, respectively. The effects of HRT and substrate concentration on the hydrogen production yield were analyzed by quadratic model. The maximum hydrogen production yield of 2.05 mol $H_2/mol$ glucose was found at the HRT of 9.6 hr and the substrate concentration of 15.4 g/L. The relationship between HRT and substrate concentration on hydrogen production yield as displayed a saddle shape in the response surface plot. Optimum HRT and substrate concentration are observed at in the range of 5 and 14 hr, at between 13 and 17 g/L, respectively, for the hydrogen production yield being 2 mol $H_2/mol$ glucose. The concentrations of organic acids increased with the increase of the amount of glucose consumption. Acetic acid and butyric acid were the main by-products from the glucose degradation.

Effects of Dietary Buffering Characteristics and Protected or Unprotected Acids on Piglet Growth, Digestibility and Characteristics of Gut Content

  • Bosi, P.;Jung, H.J.;Han, In K.;Perini, S.;Cacciavillani, J.A.;Casini, L.;Creston, D.;Gremokolini, C.;Mattuzzi, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.7
    • /
    • pp.1104-1110
    • /
    • 1999
  • We condicted two experiments to evaluate the interaction among fumaric acid (FA), protected acids (PA), or no additional acid (NO) and two different levels of acid buffering capacity (BC) in diets for 14-d-old weaned pigs. BC was varied substituting mono-calcium phosphate and calcium sulfate for dicalcium phosphate and calcium carbonate. In the high BC diet plus PA, FA was also added. In Exp. 1, 48 gilts were raised for 31 days on the six diets, evaluating growth performance and fecal digestibility. In Exp. 2, 42 gilts were raised. With each diet three subjects were sacrificed after 19 days and four after 38 days. In addition, six subjects were sacrificed at weaning. Growth and carcass performance, ileal digestibility, bacterial populations and pH in the gut were assessed. The piglet performance and stomach, ileal and cecal pH, and empty body composition were not affected by the diets. Empty body composition other than ash content was affected by piglet age (p<0.01). The BC did not influence digestibility. The dietary inclusion of PA improved fecal digestibility of protein (p<0.05) compared to the addition of FA and NO. Ileal digestibility slightly increased with both acid additions (p<0.10), the groups receiving PA showing the higher values. Piglets fed diets with low BC had lower Lactobacillus and E. coli counts in the ileum (p=0.07) and higher Lactobacillus in the colon (p=0.08). Acidified diets tended to reduce E. coli counts in the ileum (p=0.10) and increased Lactobacillus in the colon (p=0.09). The addition in the diet of PA increased Lactobacillus in the ileum compared to the sole addition of free fumaric acid (p=0.07). The addition of protected acids, combined with free fumaric acid in the case of high BC diets, increased protein digestibility and Lactobacillus counts and reduced E.coli counts. Only some changes in the concentration of bacterial population can be expected with a diet of low BC.

Optimization of Hydrogen Production using Clostridium beijerinckii KCTC 1785 (Clostridium beijerinckii KCTC 1785를 이용한 수소생산 최적화 조건 탐색)

  • Kim, Jung-Kon;Nhat, Le;Kim, Seong-Jun;Kim, Si-Wouk
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.401-407
    • /
    • 2005
  • Optimum culture conditions and medium composition for hydrogen production by Clostridium beijerinckii KCTC 1785 were investigated. Initial pH and temperature for growth were 7.0 and $35^{\circ}C$, respectively. Agitation accelerated the hydrogen production. Although C. beijerinckii KCTC 1785 could grow up to 6%(w/v) glucose in the medium, the optimum glucose concentration for hydrogen production was 4% and hydrogen content in the biogas was 37%(v/v). However, the economical glucose concentration for hydrogen production was 1% regarding to the residual glucose which was not used in the medium. During hydrogen fermentation, acetic and butyric acid were produced simultaneously. High concentrations of acetic(>5,000 mg/L) or butyric(>3,000 mg/L) acid inhibited hydrogen production. When pH was maintained at 5.5 in the batch fermentation, 1,728 mL of hydrogen was produced from 0.5% glucose within 15 hr. $H_2$ yield was estimated to be 1.23 mol $H_2/mol$ glucose. It was found that yeast extract or tryptose in the medium was essential for hydrogen production.

Effects of different nitrogen doses and cultivars on fermentation quality and nutritive value of Italian ryegrass (Lolium multiflorum Lam.) silages

  • Ertekin, Ibrahim;Atis, Ibrahim;Aygun, Yusuf Ziya;Yilmaz, Saban;Kizilsimsek, Mustafa
    • Animal Bioscience
    • /
    • v.35 no.1
    • /
    • pp.39-46
    • /
    • 2022
  • Objective: The fermentation profile and silage quality of 3 Italian ryegrass (Lolium multiflorum Lam.) cultivars (cvs. Devis, Hellen, and Trinova) treated with 5 nitrogen doses (0, 50, 100, 150, and 200 kg/ha) were evaluated. Methods: The experiment was laid out in split plot in randomized complete block design with three replications. Annual ryegrass cultivars used in this study have been commonly grown in Turkey. Nitrogen doses were set in main plot and cultivars in split plot in the field. Plants were harvested at full-flowering stage with dry matter content about 220 g/kg for first cutting and 260 g/kg for second cutting. Harvested plants were chopped theoretically into 2 to 3 cm lengths for ensiling. Chopped fresh materials were ensilaged by compressing in 2 L plastic jars about 3±0.1 kg. Results: Effects of N doses on dry matter, neutral detergent fiber, acid detergent fiber, dry matter digestibility, relative feed value, crude protein, pH, ammonia nitrogen, lactic acid, acetic acid, and lactic acid/acetic acid were statistically significant while water soluble carbohydrate, ash and organic matter were not statistically different. Ammonia nitrogen, crude protein, ash, organic matter, lactic acid, and lactic acid/acetic acid were affected by cultivars, but the other parameters were not. Increasing nitrogen applications positively affected the chemical composition of annual ryegrass silage. The significant increase in protein content was remarkable, however, silage fermentation properties were adversely affected by the increasing nitrogen dose. Conclusion: It can be recommended 150 kg/ha nitrogen dose for annual ryegrass harvested at full blooming stage. Even though the silage fermentation properties of the used cultivars were similar, cv. Devis gave better results than the others in terms of silage pH and relative feed value.

Isolation and Phosphate-Solubilizing Characteristics of PSM, Aeromonas hydrophila DA33

  • Song, Ok-Ryul;Lee, Seung-Jin;Lee, Mi-Wha;Choi, Si-Lim;Chung, Soo-Yeol;Lee, Young-Gyun;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.63-69
    • /
    • 2001
  • bacterium having high abilities to solubilize in-organic phosphate was isolated from cultivated soils. The strain was identified as Aeromonas hydrophila DA33, based on the physiological and biochemical properties. The optimum temperature and initial pH to solubilize insoluble phosphate in sucrose minimal medium were 3$0^{\circ}C$ and pH 5.0, respectively. In these conditions, phosphate-solubilizing activities of the strain against two types of insoluble phosphate were quantitatively determined. When glucose was used for carborn source, the strain had a marked mineral phospahte solubilizing activity. Inorganic phospahte solubilization was directly related to the pH drop by the strain. Analysis of the culture medium confirmed the production of gluconic acid as the main organic acid released by Aeromonas hydrophila DA33.

  • PDF

Analysis of the Chemical Constituents of Agaricus brasiliensis

  • Cho, Soo-Muk;Jang, Kab-Yeul;Park, Hong-Ju;Park, Jeong-Sik
    • Mycobiology
    • /
    • v.36 no.1
    • /
    • pp.50-54
    • /
    • 2008
  • This study examined the chemical composition of A. blasiliensis and the chemical structural properties of an immuno-stimulating polysaccharide. The amino acids, free sugars, and organic acids by HPLC and fatty acids by GC were analyzed. The immuno-stimulating substance from A. blasiliensis was extracted with hot water and purified by ethanol precipitation. It underwent ion exchange chromatography on DEAE-cellulose and gel filtration on Toyopearl HW 65F. Through GP-HPLC, the substance was found to be homogeneous. Its chemical structure was determined by $^{13}C-NMR$. Fatty acids, organic acids, and sugar alcohol composition consisted exclusively of linoleic acid, fumaric acid and mannitol, respectively. The amino acids were mainly glutamic acid, glycine, and arginine. By $^{13}C-NMR$ analysis, the immuno-stimulating substance was identified as ${\beta}-(1{\rightarrow}3)\;(1{\rightarrow}6)$-glucan, composed of a backbone with $(1{\rightarrow}3)$-linked D-glucopyranosyl residues branching a $(1{\rightarrow}6)$-linked D-glucopyranosyl residue. The ${\beta}$-glucan from A. blasiliensis showed pronounced immuno-stimulating activity on the antibody-production ability of B-lymphocytes by the hemolytic suspension assay. In these results, A. blasiliensis was estimated to have potent pharmacological properties and potential nutritional values.