Influence of Substrate Concentration and Hydraulic Retention Time on the Hydrogen Production Using Anaerobic Microflora

혐기성 미생물을 이용한 수소생산에 있어서 기질농도 및 수리학적 체류시간의 영향

  • Ko, In-Beom (Department of Civil and Environmental Engineering, KAIST) ;
  • Shin, Hang-Sik (Department of Civil and Environmental Engineering, KAIST) ;
  • Lee, Yong-Doo (Major of Civil and Environmental Engineering, Cheju National University)
  • 고인범 (한국과학기술원 건설및환경공학과) ;
  • 신항식 (한국과학기술원 건설및환경공학과) ;
  • 이용두 (제주대학교 토목환경공학)
  • Published : 2006.09.30

Abstract

The influence of substrate concentration and hydraulic retention time(HRT) on the hydrogen production by anaerobic microflora was investigated by conducting three series of continuous experiments the individual influences of substrate concentration and HRT. In series I, substrate concentration was increased from 3 to 27 g-glucose/L keeping HRT at 8 hr. Series II and III carried out same condition with series I at HRT of 16 hr and 24 hr, respectively. The effects of HRT and substrate concentration on the hydrogen production yield were analyzed by quadratic model. The maximum hydrogen production yield of 2.05 mol $H_2/mol$ glucose was found at the HRT of 9.6 hr and the substrate concentration of 15.4 g/L. The relationship between HRT and substrate concentration on hydrogen production yield as displayed a saddle shape in the response surface plot. Optimum HRT and substrate concentration are observed at in the range of 5 and 14 hr, at between 13 and 17 g/L, respectively, for the hydrogen production yield being 2 mol $H_2/mol$ glucose. The concentrations of organic acids increased with the increase of the amount of glucose consumption. Acetic acid and butyric acid were the main by-products from the glucose degradation.

혐기성 미생물에 의한 수소 생산에 있어서 기질 농도와 HRT의 영향에 대하여 3계열로 구분하여 실험을 수행하였다. 계열 I는 HRT가 8시간에서 기질농도를 3에서 27 g-glucose/L로 증가시키면서 실험을 수행하였고, 계열 II는 HRT가 16시간, 계열 3은 HRT가 24시간으로 설정하여 실험을 수행하였다. 연구결과, 수소 생성 수율에 미치는 HRT와 기질 농도의 영향에 대하여 표면분석법에 의하여 분석하였다. 최대 수소 생성 수율은 기질농도 15.4 g/L 및 HRT 9.6시간에서 2.05 mol $H_2/mol$ 글루코오스의 값을 구할 수 있었다. 2 mol $H_2/mol$ 글루코오스의 수소 생성 수율을 얻기 위한 기질농도 및 HRT는 각각 $13{\sim}17$ g/L 및 $5{\sim}14$시간임을 알 수 있었다. 글루코오스의 소모에 따라 유기산의 농도는 증가하였고, 주요 대사산물은 아세트산과 부틸산이었다.

Keywords

References

  1. Yu, H., Zhu, Z., Hu, W., and Zhang, H., 'Hydrogen Production from Rice Winery Wastewater in an Upflow Anaerobic Reactor by Using Mixed Anaerobic Culture,' International of Hydrogen Energy, 27, 1359-1365 (2002) https://doi.org/10.1016/S0360-3199(02)00073-3
  2. Tanisho, S., Suzuki, Y., Wakao, N., 'Fermentative hydrogen evolution by Enterobactor aerogenes strain E-82005,' J. Hydrogen Energy, 12(9), 623 - 627(1987) https://doi.org/10.1016/0360-3199(87)90003-6
  3. 神戶 宏, 中村 玄正, 松本順一郎, '嫌氣性處理における グルコースの酸生成分解過程と細菌群に關する基礎的研究-温度の影響-' 下水道協曾誌論文集, 29(339), 22-30(1992)
  4. 遠藤 銀朗, 野池 達也, 松本順一郎, '嫌氣性消化の酸生 成相に及ぼす温度とpHの影響,' 土木事會論文集, 330, 49-57(1983)
  5. Brosseau, J. D., Margarits, A., Zajic, J. E., 'The effect of temperature on the growth and hydrogen production by Citrobacter intermedius,' Biotechnology Letters, 3(5), 307-312(1982)
  6. Zoetemeyer van den, Heuvel, J. C., Cohen, A., 'pH influence on acidogenic dissimilation of glucose in an anaerobic digester,' Water Research, 16, 303-311(1982) https://doi.org/10.1016/0043-1354(82)90190-7
  7. 佐藤 靖敏, 円谷 輝美, 佐藤 洋一, 中村 玄正, '複合基 質からの嫌氣性水素醱酵におけるpHとHRTの影響に ついて,' 土木學會第54回年次學術講演會講演集, pp. 394-395(1999)
  8. 沈 建權, 季 玉友, 野池 達也, '嫌氣性細菌による糖類 排水の水素醱酵特性の比較, '土木學會論文集, 522(VII-1), 23-31(1996)
  9. Ueno, Y., Otsuka, S., and Morimoto, M., 'Biological production of hydrogen from cellulose by natural anaerobic microflora,' Journol of fermentation and bioengineering, 79(4), 395 -397(1995) https://doi.org/10.1016/0922-338X(95)94005-C
  10. Hawkes, F. R., Dinsdale, R., Hawkes, D. L., and Hussy, I., 'Sustainable fermentative hydrogen production: challenges for process optimisation,' Int. J. of hydrogen energy, 27, 1339-1347(2002) https://doi.org/10.1016/S0360-3199(02)00090-3
  11. Perego, P., Fabiano, B., Ponzano, G. P., and Palazzi, E., 'Experimental study of hydrogen kinetics from agroindustrial by-product: Optimal conditions for production and fuel cell feeding,' Bioprocess Engineering, 19, 205-211(1998) https://doi.org/10.1007/s004490050507
  12. 登坂 充博, 'PCR-DGGE法を用いた水素醱酵微生物群集 の構造解析,' 東北大學修士論文(2003)
  13. Dabrock, B., Bahl, H., Gottschalk, G., 'Parameters affecting solment production by Clostridium pasteurianum,' Applied and Environmental Microbiology, 58(4), 1233-1239(1992)
  14. Yong, K., Yu, Y., and Hwang, S., 'Selective optimization in thermophilic acidogenesis of cheese-whey wastewate to acetic and butyric acids: partial acidification and methanation,' Water Research, 37, 2467-2477(2003) https://doi.org/10.1016/S0043-1354(03)00006-X
  15. Lay, J. J., Lee, Y. J., Noike, T., 'Feasibility of biological hydrogen production from organic fraction of municipal solid,' Water Research, 33(11), 2579-2586(1999) https://doi.org/10.1016/S0043-1354(98)00483-7
  16. Lay, J. J., 'Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose,' Biotechnology and Bioengineering, 74(4), 280-287(2001) https://doi.org/10.1002/bit.1118