Optimization of Hydrogen Production using Clostridium beijerinckii KCTC 1785

Clostridium beijerinckii KCTC 1785를 이용한 수소생산 최적화 조건 탐색

  • Kim, Jung-Kon (Department of Bio Materials Engineering, Chosun University) ;
  • Nhat, Le (Department of Bio Materials Engineering, Chosun University) ;
  • Kim, Seong-Jun (Department of Civil, Geosystem and Environmental Engineering, Chonnam National University) ;
  • Kim, Si-Wouk (Department of Environmental Engineering, Chosun University)
  • Published : 2005.12.30

Abstract

Optimum culture conditions and medium composition for hydrogen production by Clostridium beijerinckii KCTC 1785 were investigated. Initial pH and temperature for growth were 7.0 and $35^{\circ}C$, respectively. Agitation accelerated the hydrogen production. Although C. beijerinckii KCTC 1785 could grow up to 6%(w/v) glucose in the medium, the optimum glucose concentration for hydrogen production was 4% and hydrogen content in the biogas was 37%(v/v). However, the economical glucose concentration for hydrogen production was 1% regarding to the residual glucose which was not used in the medium. During hydrogen fermentation, acetic and butyric acid were produced simultaneously. High concentrations of acetic(>5,000 mg/L) or butyric(>3,000 mg/L) acid inhibited hydrogen production. When pH was maintained at 5.5 in the batch fermentation, 1,728 mL of hydrogen was produced from 0.5% glucose within 15 hr. $H_2$ yield was estimated to be 1.23 mol $H_2/mol$ glucose. It was found that yeast extract or tryptose in the medium was essential for hydrogen production.

본 연구는 C. beijerinckii KCTC 1785의 배양배지(RCM)에서 수소생산을 위한 최적화 조건을 탐색하고 수소생산을 위한 배지성분을 최적화하였다. 수소생산을 위한 최적 초기 pH와 발효온도는 각각 7.0과 $35^{\circ}C$이었고, 교반은 수소생산을 가속화 시켰다. C. beijerinckii KCTC 1785는 6%(w/v)의 glucose 농도까지 성장할 수 있지만 4%의 glucose 농도에서 가장 많은 수소를 생산하였으며, 이 때 바이오가스 중 수소 함량은 37%(v/v)이었다. 그러나 배지내 잔여 glucose 양을 고려할 때 수소생산을 위한 최적 glucose 농도는 1%이었다. 발효가 진행되는 동안 수소가 생산됨과 동시에 acetic acid와 butyric acid가 동시에 생성되었으며, acetic acid와 butyric acid가 각각 5,000 mg/L과 3,000 mg/L 이상의 농도에서 수소생산을 저해하였다. 또한 발효조의 pH를 5.5로 계속 유지하였을 경우 15시간 동안 0.5% glucose로부터 1,728 mL의 수소를 생산하였으며 이 때 수소의 생산수율은 1.23 mol $H_2/mol$ glucose이었다. C. beijerinckii KCTC 1785의 성장에 있어서 yeast extract 또는 tryptose는 반드시 필요한 배지의 성분이었다.

Keywords

References

  1. Oh, Y. K., M. S. Park, E. H. Seol, and S. Park (2003), Isolation of hydrogen-producing bacteria from granular sludge of upflow anaerobic sludge blanket reactor, Biotech. Bioprocess Eng. 8, 54-57 https://doi.org/10.1007/BF02932899
  2. Oh, Y. K., Y. J. Kim, J. Y. Park, T. H. Lee, M. S. Kim, and S. Park (2005), Biohydrgen production from carbon monoxide and water by Rhodopseudomonas palustris P4, Biotech. Bioprocess Eng. 10, 270-274 https://doi.org/10.1007/BF02932024
  3. Lee, K. S., C. M. Kang, and S. Y. Chung (2004), Culture conditions for hydrogen production of Enterobacter cloacae YJ-1, Kor. J. Biotechnol. Bioeng. 19, 446-450
  4. Schnackenberg, J., R. Schulz, and H. Senger (1993), Characterization and purification of a hydrogenase from eukaryotic green alga Scendesmus obliguus, FFB Lett. 327, 21-24 https://doi.org/10.1016/0014-5793(93)81030-4
  5. Greenbaum, E. (1990), Hydrogen production by photosynthetic water splitting. In Hydrogen energy progress VIII, T.N. Veziroglu, P. K. Takashashi Eds.; Proceedings 8th WHEC, Hawaii. New York: Pergamon Press, pp743-754
  6. Banerjee, M., A. Kumar, and H. D. Kumar (1989), Factors regulating nitrogenase activity and hydrogen evolution in Azalia-Anabaena symbiosis, J. Hydrogen Energy. 12, 871-879
  7. Shi, D. J., M. Brouers, D. O. Hall, and R. J. Rubin (1987), The effects of immobilization on the biochemical, physiological and morphological features of Anabaena azollae, Planta 172, 298-308 https://doi.org/10.1007/BF00398658
  8. Tsygankov, A.S., L. T. Serebryakova, D. A. Sueshnikov, K. K. Rao, I. N. Gogotov, and D. O. Hall (1997), Hydrogen photo-production by three different nitrogenases in whole cells of Anabaena variabilis and dependence on pH, J. Hydrogen Energy 22, 859-867 https://doi.org/10.1016/S0360-3199(96)00242-X
  9. Fascetti, E., E. D' addario, O. Todini, and A. Robertiello (1998), Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes, J. Hydrogen Energy 23, 753-760 https://doi.org/10.1016/S0360-3199(97)00123-7
  10. Krahn, E., K. Schnerder, and K. Muller (1996), Comparative characterization of H, production by the conventional Mo nitrogenase and alternative 'iron-only' nitrogenase of Rhodobater capsulata hap mutants, Appl. Microbiol. Biotechnol. 46, 285-290 https://doi.org/10.1007/s002530050818
  11. Singh, S. P. and S. C. Srivastava (1991) Isolation of non-sulfur photo-synthetic bacteria strains efficient in hydrogen production at elevated temperatures, J. Hydrogen Energy 16, 404-405
  12. Tanisho, S., N. Wakao, and Y. Kokako (1983), Biological hydrogen production by Enterobacter aerogenes, J. Chem. Eng. Jpn. 16, 529-530 https://doi.org/10.1252/jcej.16.529
  13. Kumar, N. and D. Das (1999), Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08, Process Biochem. 35, 589-594
  14. Tanisho, S., Y. Suzuki, N. Wakoo (1987), Fermentative hydrogen evolution by Enterobacter aerogenes strain E.82005, J. Hydrogen Energy 12, 623-627 https://doi.org/10.1016/0360-3199(87)90003-6
  15. Taguchi, F, J. D. Hang, S. Taguchi, and M. Morimoto (1992), Efficient hydrogen production from starch by a bacterium isolated from termites, J. Ferment. Bioeng. 73, 244-245 https://doi.org/10.1016/0922-338X(92)90172-Q
  16. Collet, C., N. Adler, J. P. Schwitzguebe, and P. Peringer (2004), Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose, Int. J. Hydrogen Energy 29, 1479-1485 https://doi.org/10.1016/j.ijhydene.2004.02.009
  17. Lay, J. J., K. S. Fan, J. Chang, and C. H. Ku (2003), Influence of chentical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge, Int. J. Hydrogen Energy 28, 1361-1367 https://doi.org/10.1016/S0360-3199(03)00027-2
  18. De Vrije, T. and P. A. M. Claassen (2003), Bio-methane & Biohydrogen; Dark hydrogen fermentation, Dutch Biological Hydrogen Foundation, 104-105
  19. Han, S. K. and H. S. Shin. (2004), Biohydrogen production by anaerobic fermentation of food waste, Int. J. Hydrogen Energy 29, 569-577 https://doi.org/10.1016/j.ijhydene.2003.09.001
  20. Miller, G. L. (1959), Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem. 31, 426-428 https://doi.org/10.1021/ac60147a030
  21. Lee, Y. J., T. Miyahara and T. Noike (2002), Effect of pH on microbial hydrogen fermentation, J. Chem. Technol. Biotechnol. 77, 694-698 https://doi.org/10.1002/jctb.623
  22. Khanal, S. K., W. H. Chen, L. Li, and S. Sung (2004), Biological hydrogen production: effects of pH and intermediate products, Int. J. Hydrogen Energy 29, 1123-1131
  23. Taguchi, F., N. Mizukami, K. Hasegawa, T. Saito-Taki, and M. Morimoto (1994), Effect of amylase accumulation on hydrogen production by Clostridium beijerinckii, strain AM21B, J. Ferment. Bioeng. 77, 565-567 https://doi.org/10.1016/0922-338X(94)90131-7
  24. J. van Niel, E. W., P. A. M. Claassen, A. J. M. Stams (2003), Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus, Biotechnol. Bioeng. 81, 255-262 https://doi.org/10.1002/bit.10463
  25. Van andel, J. G., G. R. Zoutberg, P. M. Crabbendam, and A. M. Breure (1985), Glucose fermentation by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture, Appl. Micro. Biotechnol. 23, 21-26 https://doi.org/10.1007/BF02660113