• 제목/요약/키워드: organ regeneration

검색결과 65건 처리시간 0.027초

손상된 불가사리 추출물 흡입이 흡연으로 인한 항염증과 항산화 효소의 효과 (The Injured Starfish Extract Inhalation Effects of Anti-inflammation and Anti-oxidants Enzyme during Indirect Cigarette Smoking)

  • 황경희;정혁;장수찬;박종석;김유영
    • KSBB Journal
    • /
    • 제27권6호
    • /
    • pp.367-374
    • /
    • 2012
  • Cigarette smoking (SM) is considered to be well known environmental toxin which contributes to the onset of various diseases. SM cause direct lungs damage, activate lungs inflammatory responses, and in some cases leads to the development of lung cancer. Cytokines in injured starfish (Asterina pectinifera) is the potential changes in its expression during the regeneration process. Especially, expression of TGF-${\beta}1$ has increased in arm cut starfish extract after eight days. Also, starfish including saponin like the ginseng. Saponin is widely used in the world because of some effective pharmacological activities. Therefore, the current study was designed to elucidate the pharmacological activities of starfish extract against cigarette smoking induced damage in cell line and pulmonary tissue. We investigate that the effect of eight days starfish extract after arm cut (8d) and intact starfish extract on cell line and mouse lung injury by SM. In cell proliferation analysis, although cigarette smoking extract (CSE) was co-treated, the higher proliferation ability is shown in 8d treatment than intact starfish extract. 8d and intact starfish extract was directly transported to pulmonary cells through respiratory organ by nebulizer inhalation. In this case of cigarette smoking, the pulmonary structure was damaged and functions become abnormal. However, 8d treated groups showed similar with the control group compared with SM group. Among them, 8d was proved to be more effective than intact starfish extract. These results demonstrate that 8d could more protect pulmonary structure and function than intact starfish extract against cigarette smoking by ginseng like saponin and regulation of inflammatory cytokines.

The Epithelial-Mesenchymal Transition During Tooth Root Development

  • Kang, Jee-Hae;Park, Jin-Ho;Moon, Yeon-Hee;Moon, Jung-Sun;Kim, Sun-Hun;Kim, Min-Seok
    • International Journal of Oral Biology
    • /
    • 제36권3호
    • /
    • pp.135-141
    • /
    • 2011
  • Hertwig's epithelial root sheath (HERS) consists of bi-layered cells derived from the inner and outer dental epithelia and plays important roles in tooth root formation as well as in the maintenance and regeneration of periodontal tissues. With regards to the fate of HERS, and although previous reports have suggested that this entails the formation of epithelial rests of Malassez, apoptosis or an epithelial-mesenchymal transformation (EMT), it is unclear what changes occur in the epithelial cells in this structure. This study examined whether HERS cells undergo EMT using a keratin-14 (K14) cre:ROSA 26 transgenic reporter mouse. The K14 transgene is expressed by many epithelial tissues, including the oral epithelium and the enamel organ. A distinct K14 expression pattern was found in the continuous HERS bi-layer and the epithelial diaphragm were visualized by detecting the ${\beta}$-galactosidase (lacZ) activity in 1 week postnatal mice. The 2 and 4 week old mice showed a fragmented HERS with cell aggregation along the root surface. However, some of the lacZ-positive dissociated cells along the root surface were not positive for pan-cytokeratin. These results suggest that the K14 transgene is a valuable marker of HERS. In addition, the current data suggest that some of the HERS cells may lose their epithelial properties after fragmentation and subsequently undergo EMT.

하악골에 발생한 재발성 법랑아 세포종의 치험례 (A CASE REPORT OF TREATMENT OF RECURRENT GRANULAR-TYPE AMELOBLASTOMA)

  • 윤규호;노영서;박성원;신명상;전인성
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제16권2호
    • /
    • pp.179-185
    • /
    • 1994
  • 본 환자는 하악우측골체부의 심한 종창 및 동통으로 인한 안모 불균형을 주소로 내원한 50세의 남자환자로 조직검사상 법랑아세포종으로 진단하에 하악골 하연을 보존한 marginal resection을 시행한 뒤 임상적 소견 및 주기적인 방사선 사진상을 관찰한 후 장골이식을 시술하여 술후 2년이 경과한 지금까지 재발의 소견없이 기능 및 심미적으로 양호한 치유과정을 보이고 있다.

  • PDF

고구마 경단 유래 배발생 캘러스로부터 식물체 재분화에 미치는 생장조절제의 영향 (Effects of Growth Regulators on Plant Regeneration in Shoot-Tip-Derived Embryogenic Callus Cultures of Sweet Potato (Ipomoea batatas))

  • 이은모;;아키라사쿠라이;문창식;노태홍
    • 식물조직배양학회지
    • /
    • 제21권5호
    • /
    • pp.281-286
    • /
    • 1994
  • 고구마 경단배양에 의한 우량종묘 대량증식 과정에서 분화 및 생육에 미치는 생장조절제의 효과를 구명하기 위하여 실험을 수행하였다. 고구마 경단조직은 1 mEm/L 2,4-D 첨가된 MS배지에서 배양 40일경 배발생 캘러스가 형성되었다. 또한 형성된 배발생 캘러스는 0.1 mg/L GA$_4$ 첨가된 배지에 배양한 경우, 효과적으로 배발생 캘러스를 유지 및 증식이 가능하였으며, 배발생캘러스로부터 shoot 재분화는 0.1mg/L BA가 유효하였다. 체세포배로부터 shoot 재분화는 0.01 ngh BA와 0.01 mg/L GA$_4$ 혹은 0.1 mg/L BA와 0.01mg/L GA$_4$ 혼합배지에서 양호하였으며, 0.1-1 mg/L BA를 첨가된 배지에서는 배발생 캘러스 및 체세포배로부터 녹색의 단단한 캘러스가 형성되었다. 체세포배를 배양하여 얻어진 5 mm 크기의 shoot 정단을 재배양 시, 0.1 mg/L jasmonic acid 또는 0.01 mg/L brassnlolide가 첨가된 배지에서 소식물체의 생육이 가장 양호하였다.

  • PDF

Development and Evaluation of Hyaluronic Acid-Based Hybrid Bio-Ink for Tissue Regeneration

  • Lee, Jaeyeon;Lee, Se-Hwan;Kim, Byung Soo;Cho, Young-Sam;Park, Yongdoo
    • Tissue Engineering and Regenerative Medicine
    • /
    • 제15권6호
    • /
    • pp.761-769
    • /
    • 2018
  • BACKGROUND: Bioprinting has recently appeared as a powerful tool for building complex tissue and organ structures. However, the application of bioprinting to regenerative medicine has limitations, due to the restricted choices of bio-ink for cytocompatible cell encapsulation and the integrity of the fabricated structures. METHODS: In this study, we developed hybrid bio-inks based on acrylated hyaluronic acid (HA) for immobilizing bio-active peptides and tyramine-conjugated hyaluronic acids for fast gelation. RESULTS: Conventional acrylated HA-based hydrogels have a gelation time of more than 30 min, whereas hybrid bio-ink has been rapidly gelated within 200 s. Fibroblast cells cultured in this hybrid bio-ink up to 7 days showed >90% viability. As a guidance cue for stem cell differentiation, we immobilized four different bio-active peptides: BMP-7-derived peptides (BMP-7D) and osteopontin for osteogenesis, and substance-P (SP) and Ac-SDKP (SDKP) for angiogenesis. Mesenchymal stem cells cultured in these hybrid bio-inks showed the highest angiogenic and osteogenic activity cultured in bio-ink immobilized with a SP or BMP-7D peptide. This bio-ink was loaded in a three-dimensional (3D) bioprinting device showing reproducible printing features. CONCLUSION: We have developed bio-inks that combine biochemical and mechanical cues. Biochemical cues were able to regulate differentiation of cells, and mechanical cues enabled printing structuring. This multi-functional bio-ink can be used for complex tissue engineering and regenerative medicine.

Alteration of cellular events in tooth development by chemical chaperon, Tauroursodeoxycholic acid treatment

  • Lee, Eui-Seon;Aryal, Yam Prasad;Kim, Tae-Young;Pokharel, Elina;Kim, Harim;Sung, Shijin;Sohn, Wern-Joo;Lee, Youngkyun;An, Chang-Hyeon;Kim, Jae-Young
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.190-196
    • /
    • 2020
  • Several factors, including genetic and environmental insults, impede protein folding and secretion in the endoplasmic reticulum (ER). Accumulation of unfolded or mis-folded protein in the ER manifests as ER stress. To cope with this morbid condition of the ER, recent data has suggested that the intracellular event of an unfolded protein response plays a critical role in managing the secretory load and maintaining proteostasis in the ER. Tauroursodeoxycholic acid (TUDCA) is a chemical chaperone and hydrophilic bile acid that is known to inhibit apoptosis by attenuating ER stress. Numerous studies have revealed that TUDCA affects hepatic diseases, obesity, and inflammatory illnesses. Recently, molecular regulation of ER stress in tooth development, especially during the secretory stage, has been studied. Therefore, in this study, we examined the developmental role of ER stress regulation in tooth morphogenesis using in vitro organ cultivation methods with a chemical chaperone treatment, TUDCA. Altered cellular events including proliferation, apoptosis, and dentinogenesis were examined using immunostaining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. In addition, altered localization patterns of the formation of hard tissue matrices related to molecules, including amelogenin and nestin, were examined to assess their morphological changes. Based on our findings, modulating the role of the chemical chaperone TUDCA in tooth morphogenesis, especially through the modulation of cellular proliferation and apoptosis, could be applied as a supporting data for tooth regeneration for future studies.

Cytokinin signaling promotes root secondary growth and bud formation in Panax ginseng

  • Kyoung Rok Geem;Yookyung Lim;Jeongeui Hong;Wonsil Bae;Jinsu Lee;Soeun Han;Jinsu Gil;Hyunwoo Cho;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • 제48권2호
    • /
    • pp.220-228
    • /
    • 2024
  • Background: Panax ginseng, one of the valuable perennial medicinal plants, stores numerous pharmacological substrates in its storage roots. Given its perennial growth habit, organ regeneration occurs each year, and cambium stem cell activity is necessary for secondary growth and storage root formation. Cytokinin (CK) is a phytohormone involved in the maintenance of meristematic cells for the development of storage organs; however, its physiological role in storage-root secondary growth remains unknown. Methods: Exogenous CK was repeatedly applied to P. ginseng, and morphological and histological changes were observed. RNA-seq analysis was used to elucidate the transcriptional network of CK that regulates P. ginseng growth and development. The HISTIDINE KINASE 3 (PgHK3) and RESPONSE REGULATOR 2 (PgRR2) genes were cloned in P. ginseng and functionally analyzed in Arabidopsis as a two-component system involved in CK signaling. Results: Phenotypic and histological analyses showed that CK increased cambium activity and dormant axillary bud formation in P. ginseng, thus promoting storage-root secondary growth and bud formation. The evolutionarily conserved two-component signaling pathways in P. ginseng were sufficient to restore CK signaling in the Arabidopsis ahk2/3 double mutant and rescue its growth defects. Finally, RNA-seq analysis of CK-treated P. ginseng roots revealed that plant-type cell wall biogenesis-related genes are tightly connected with mitotic cell division, cytokinesis, and auxin signaling to regulate CK-mediated P. ginseng development. Conclusion: Overall, we identified the CK signaling-related two-component systems and their physiological role in P. ginseng. This scientific information has the potential to significantly improve the field-cultivation and biotechnology-based breeding of ginseng.

Hippo Signal Transduction Mechanisms in T Cell Immunity

  • Antoine Bouchard;Mariko Witalis;Jinsam Chang;Vincent Panneton;Joanna Li;Yasser Bouklouch;Woong-Kyung Suh
    • IMMUNE NETWORK
    • /
    • 제20권5호
    • /
    • pp.36.1-36.13
    • /
    • 2020
  • Hippo signaling pathways are evolutionarily conserved signal transduction mechanisms mainly involved in organ size control, tissue regeneration, and tumor suppression. However, in mammals, the primary role of Hippo signaling seems to be regulation of immunity. As such, humans with null mutations in STK4 (mammalian homologue of Drosophila Hippo; also known as MST1) suffer from recurrent infections and autoimmune symptoms. Although dysregulated T cell homeostasis and functions have been identified in MST1-deficient human patients and mouse models, detailed cellular and molecular bases of the immune dysfunction remain to be elucidated. Although the canonical Hippo signaling pathway involves transcriptional co-activator Yes-associated protein (YAP) or transcriptional coactivator with PDZ motif (TAZ), the major Hippo downstream signaling pathways in T cells are YAP/TAZ-independent and they widely differ between T cell subsets. Here we will review Hippo signaling mechanisms in T cell immunity and describe their implications for immune defects found in MST1-deficient patients and animals. Further, we propose that mutual inhibition of Mst and Akt kinases and their opposing roles on the stability and function of forkhead box O and β-catenin may explain various immune defects discovered in mutant mice lacking Hippo signaling components. Understanding these diverse Hippo signaling pathways and their interplay with other evolutionarily-conserved signaling components in T cells may uncover molecular targets relevant to vaccination, autoimmune diseases, and cancer immunotherapies.

바이오-플로팅시스템을 통한 Tailor-Made 3D PCL Scaffold 제작 (Fabrication of Tailor-Made 3D PCL Scaffold Using a Bio-Plotting Process)

  • 손준곤;김근형;박수아;김완두
    • 폴리머
    • /
    • 제32권2호
    • /
    • pp.163-168
    • /
    • 2008
  • 생체 친화적이며 생분해성 고분자 소재인 poly($\varepsilon$-caprolactone)(PCL)을 rapid prototyping(RP) 공정인 바이오플로팅 시스템을 통해 세포 재생용 지지체(scaffold)를 제작하였다. 제작된 PCL 지지체는 DMA(dynamic mechanical analyzer)를 통해 동일한 재료로 제작된 기존 염침출법(salt-leaching)에 의한 지지체보다 월등히 향상된 기계적 강도를 갖고 있음을 확인하였고, 이는 기존 전통적인 세포지지체 제작에서 문제점중의 하나인 기계적인 강도적인 측면을 보완하여, 뼈조직 재생에 유용하게 활용될 수 있을 것으로 예상된다. 지지체 내부의 구조는 세포의 증식과 이동 및 영양분의 공급이 지속될 수 있도록 전체적으로 연결된 통로로 구성되어 있고, 다양한 세포의 증식이 가능하도록 지지체의 공극 크기와 strand의 굵기 등을 조절할 수 있으며, 이를 이용하여 대체하고자 하는 생체조직의 특성에 맞도록 기계적 강도를 조정할 수 있음을 확인하였다. 제조된 PCL지지체는 연골세포를 통하여 셀 컬쳐링 되었고, 3차원 세포 지지체로서의 충분한 가능성을 보여주었다.

대두 기내 배양체의 분화에 대한 생화학적 성분의 변화와 특성 : (I) 대두 기내 배양체의 분화에 대한 단백질, 아미노산 및 peroxidase 동위효소의 변화와 특성 (Changes and characteristics of the biochemical components on the differentiation of soybean cell tissue cultures: (1) Changes and characteristics of the proteins, amino acids and peroxidase isozymes on differentiation of soybean cell tissue cultures)

  • 남상해;최상욱;양민석
    • Applied Biological Chemistry
    • /
    • 제34권2호
    • /
    • pp.134-141
    • /
    • 1991
  • 대두의 조직배양에서 배양기간중 생화학적 대사산물의 변화와 특성을 조사하기 위하여 개화후 15일된 미숙자엽을 채취하여 기내에서 3주간 배양하였다. 이때의 배양체를 embryogenic callus(EC)와 non-embryogenic callus(NEC)로 구분하였다. EC의 일부는 다시 3주간 계 대배양하여 root forming cultures(RFC)와 shoot forming cultures(SFC)로 구분하였으며, EC의 또 다른 일부는 원형질체의 분리에 사용되었으며, 분리된 원형질체는 4주간 배양하였다. 이때 유기된 배양체를 protoplasts로부터 유기된 embryogenic callus(PEC)와 non-embryogenic callus(PNEC)로 구분하였다. 각각의 배양체에 대하여 단백질 및 그 아미노산조성을 조사한 결과, 아미노산의 조성 은 NEC와 PNEC에서보다 EC와 PEC에 서 methionine의 함량이 현저히 낮은 반면, phenylalanine의 함량이 높았다. 단백질의 양상은 EC에서는 18KD, NEC에서는 22KD 정도에서 차이가 났다. 또한 각각의 배양체에 대한 peroxidase 동위 효소의 활성을 조사한 결과, EC와 PEC에서는 peroxidase isozyme A(piA)의 활성이 높게 나타났으며, RFC와 SFC에서는 peroxidase isozyme B(piB)의 활성이 높았다.

  • PDF