Acknowledgement
Supported by : Ministry of Health and Welfare
References
- Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng. 2013;60:691-9. https://doi.org/10.1109/TBME.2013.2243912
- Kim JH, Yoo JJ, Lee SJ. Three-dimensional cell-based bioprinting for soft tissue regeneration. Tissue Eng Regen Med. 2016;13:647-62. https://doi.org/10.1007/s13770-016-0133-8
- Park JH, Jang JA, Lee JS, Cho DW. Current advances in threedimensional tissue/organ printing. Tissue Eng Regen Med. 2016;13:612-21. https://doi.org/10.1007/s13770-016-8111-8
- Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773-85. https://doi.org/10.1038/nbt.2958
- Murphy SV, Skardal A, Atala A. Evaluation of hydrogels for bioprinting applications. J Biomed Mater Res A. 2013;101:272-84.
- Seol YJ, Kang HW, Lee SJ, Atala A, Yoo JJ. Bioprinting technology and its applications. Eur J Cardiothorac Surg. 2014;46:342-8. https://doi.org/10.1093/ejcts/ezu148
- Malda J, Visser J, Melchels FP, Jungst T, Hennink WE, Dhert WJ, et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater. 2013;25:5011-28. https://doi.org/10.1002/adma.201302042
- Kim JE, Kim SH, Jung YM. Current status of three-dimensional printing inks for soft tissue regeneration. Tissue Eng Regen Med. 2016;13:636-46. https://doi.org/10.1007/s13770-016-0125-8
- Stanton MM, Samitier J, Sanchez S. Bioprinting of 3D hydrogels. Lab Chip. 2015;15:3111-5. https://doi.org/10.1039/C5LC90069G
- Colosi C, Shin SR, Manoharan V, Massa S, Costantini M, Barbetta A, et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater. 2016;28:677-84. https://doi.org/10.1002/adma.201503310
- Li C, Faulkner-Jones A, Dun AR, Jin J, Chen P, Xing Y, et al. Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting. Angew Chem Int Ed Engl. 2015;54:3957-61. https://doi.org/10.1002/anie.201411383
- Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater. 2015;27:1607-14. https://doi.org/10.1002/adma.201405076
- Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 2013;101:1255-64.
- Duan B, Kapetanovic E, Hockaday LA, Butcher JT. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 2014;10:1836-46. https://doi.org/10.1016/j.actbio.2013.12.005
- Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. https://doi.org/10.1038/ncomms4935
- Das S, Pati F, Choi YJ, Rijal G, Shim JH, Kim SW, et al. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of threedimensional tissue constructs. Acta Biomater. 2015;11:233-46. https://doi.org/10.1016/j.actbio.2014.09.023
- Benoit DS, Schwartz MP, Durney AR, Anseth KS. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater. 2008;7:816-23. https://doi.org/10.1038/nmat2269
- Song M, Jang H, Lee J, Kim JH, Kim SH, Sun K, et al. Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide Ac-SDKP. Biomaterials. 2014;35:2436-45. https://doi.org/10.1016/j.biomaterials.2013.12.011
- Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G, et al. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials. 2007;28:1830-7. https://doi.org/10.1016/j.biomaterials.2006.11.050
- Kuo YC, Chang YH. Differentiation of induced pluripotent stem cells toward neurons in hydrogel biomaterials. Colloids Surf B Biointerfaces. 2013;102:405-11. https://doi.org/10.1016/j.colsurfb.2012.08.061
- Lee F, Chung JE, Kurisawa M. An injectable hyaluronic acidtyramine hydrogel system for protein delivery. J Control Release. 2009;134:186-93. https://doi.org/10.1016/j.jconrel.2008.11.028
- Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23:H41-56. https://doi.org/10.1002/adma.201003963
- Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials. 2010;31:4639-56. https://doi.org/10.1016/j.biomaterials.2010.02.044
- Kim J, Kim IS, Cho TH, Kim HC, Yoon SJ, Choi J, et al. In vivo evaluation of mmp sensitive high-molecular weight ha-based hydrogels for bone tissue engineering. J Biomed Mater Res A. 2010;95:673-81.
- Oh SH, Park IK, Kim JM, Lee JH. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials. 2007;28:1664-71. https://doi.org/10.1016/j.biomaterials.2006.11.024
- Kim J, Park Y, Tae G, Lee KB, Hwang SJ, Kim IS, et al. Synthesis and characterization of matrix metalloprotease sensitive-low molecular weight hyaluronic acid based hydrogels. J Mater Sci Mater Med. 2008;19:3311-8. https://doi.org/10.1007/s10856-008-3469-3
- Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P. The 3D printing of gelatin methacrylamide cell-laden tissueengineered constructs with high cell viability. Biomaterials. 2014;35:49-62. https://doi.org/10.1016/j.biomaterials.2013.09.078
- Tasoglu S, Demirci U. Bioprinting for stem cell research. Trends Biotechnol. 2013;31:10-9. https://doi.org/10.1016/j.tibtech.2012.10.005
- Shi Y, Do JT, Desponts C, Hahm HS, Scholer HR, Ding S. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell. 2008;2:525-8. https://doi.org/10.1016/j.stem.2008.05.011
- Re'em T, Tsur-Gang O, Cohen S. The effect of immobilized RGD peptide in macroporous alginate scaffolds on TGFbeta1-induced chondrogenesis of human mesenchymal stem cells. Biomaterials. 2010;31:6746-55. https://doi.org/10.1016/j.biomaterials.2010.05.025
- Takahashi T, Lord B, Schulze PC, Fryer RM, Sarang SS, Gullans SR, et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation. 2003;107:1912-6. https://doi.org/10.1161/01.CIR.0000064899.53876.A3
- Kim JH, Jung Y, Kim BS, Kim SH. Stem cell recruitment and angiogenesis of neuropeptide substance p coupled with selfassembling peptide nanofiber in a mouse hind limb ischemia model. Biomaterials. 2013;34:1657-68. https://doi.org/10.1016/j.biomaterials.2012.11.008
- Beederman M, Lamplot JD, Nan G, Wang J, Liu X, Yin L, et al. BMP signaling in mesenchymal stem cell differentiation and bone formation. J Biomed Sci Eng. 2013;6:32-52.
- Standal T, Borset M, Sundan A. Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol. 2004;26:179-84.
- Ziche M, Morbidelli L, Pacini M, Geppetti P, Alessandri G, Maggi CA. Substance P stimulates neovascularization in vivo and proliferation of cultured endothelial cells. Microvasc Res. 1990;40:264-78. https://doi.org/10.1016/0026-2862(90)90024-L
- Kohara H, Tajima S, Yamamoto M, Tabata Y. Angiogenesis induced by controlled release of neuropeptide substance P. Biomaterials. 2010;31:8617-25. https://doi.org/10.1016/j.biomaterials.2010.07.079
- Um JH, Yu JY, Dubon MJ, Park KS. Substance P and thiorphan synergically enhance angiogenesis in wound healing. Tissue Eng Regen Med. 2016;13:149-54. https://doi.org/10.1007/s13770-016-9089-y
- Shih C, Bernard GW. Neurogenic substance p stimulates osteogenesis in vitro. Peptides. 1997;18:323-6. https://doi.org/10.1016/S0196-9781(96)00280-X
- Wang L, Zhao R, Shi X, Wei T, Halloran BP, Clark DJ, et al. Substance P stimulates bone marrow stromal cell osteogenic activity, osteoclast differentiation, and resorption activity in vitro. Bone. 2009;45:309-20. https://doi.org/10.1016/j.bone.2009.04.203
- Mei G, Xia L, Zhou J, Zhang Y, Tuo Y, Fu S, et al. Neuropeptide SP activates the WNT signal transduction pathway and enhances the proliferation of bone marrow stromal stem cells. Cell Biol Int. 2013;37:1225-32.
- Zhang R, Oyajobi BO, Harris SE, Chen D, Tsao C, Deng HW, et al. Wnt/b-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone. 2013;52:145-56. https://doi.org/10.1016/j.bone.2012.09.029
- Fu S, Mei G, Wang Z, Zou ZL, Liu S, Pei GX, et al. Neuropeptide substance P improves osteoblastic and angiogenic differentiation capacity of bone marrow stem cells in vitro. Biomed Res Int. 2014;2014:596023.
-
Chen G, Deng C, Li YP. TGF-
${\beta}$ and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8:272-88. https://doi.org/10.7150/ijbs.2929 - Franceschi RT, Wang D, Krebsbach PH, Rutherford RB. Gene therapy for bone formation: in vitro and in vivo osteogenic activity of an adenovirus expressing BMP7. J Cell Biochem. 2000;78:476-86. https://doi.org/10.1002/1097-4644(20000901)78:3<476::AID-JCB12>3.0.CO;2-5
- Akiyama I, Yoshino O, Osuga Y, Shi J, Harada M, Koga K, et al. Bone morphogenetic protein 7 increased vascular endothelial growth factor (VEGF)-a expression in human granulosa cells and VEGF receptor expression in endothelial cells. Reprod Sci. 2014;21:477-82. https://doi.org/10.1177/1933719113503411
- Yue TL, McKenna PJ, Ohlstein EH, Farach-Carson MC, Butler WT, Johanson K, et al. Osteopontin-stimulated vascular smooth muscle cell migration is mediated by beta 3 integrin. Exp Cell Res. 1994;214:459-64. https://doi.org/10.1006/excr.1994.1282
- Weintraub AS, Schnapp LM, Lin X, Taubman MB. Osteopontin deficiency in rat vascular smooth muscle cells is associated with an inability to adhere to collagen and increased apoptosis. Lab Invest. 2000;80:1603-15. https://doi.org/10.1038/labinvest.3780171
- Gao H, Steffen MC, Ramos KS. Osteopontin regulates alphasmooth muscle actin and calponin in vascular smooth muscle cells. Cell Biol Int. 2012;36:155-61. https://doi.org/10.1042/CBI20100240
Cited by
- Enhancing survival, engraftment, and osteogenic potential of mesenchymal stem cells vol.11, pp.10, 2018, https://doi.org/10.4252/wjsc.v11.i10.748
- Engineered 3D Polymer and Hydrogel Microenvironments for Cell Culture Applications vol.6, pp.4, 2018, https://doi.org/10.3390/bioengineering6040113
- Hydrogels for Bioprinting: A Systematic Review of Hydrogels Synthesis, Bioprinting Parameters, and Bioprinted Structures Behavior vol.8, pp.None, 2018, https://doi.org/10.3389/fbioe.2020.00776
- Hyaluronic acid as a bioink for extrusion-based 3D printing vol.12, pp.3, 2018, https://doi.org/10.1088/1758-5090/ab8752
- Printability and Shape Fidelity of Bioinks in 3D Bioprinting vol.120, pp.19, 2018, https://doi.org/10.1021/acs.chemrev.0c00084
- An insight into cell-laden 3D-printed constructs for bone tissue engineering vol.8, pp.43, 2018, https://doi.org/10.1039/d0tb02019b
- Ad-Dressing Stem Cells: Hydrogels for Encapsulation vol.9, pp.1, 2018, https://doi.org/10.3390/pr9010011
- Additive Manufacturing of Biopolymers for Tissue Engineering and Regenerative Medicine: An Overview, Potential Applications, Advancements, and Trends vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/4907027
- Non‐invasive in vivo monitoring of transplanted stem cells in 3D ‐bioprinted constructs using near‐infrared fluorescent imaging vol.6, pp.2, 2021, https://doi.org/10.1002/btm2.10216
- Biofabrication Strategies for Musculoskeletal Disorders: Evolution towards Clinical Applications vol.8, pp.9, 2018, https://doi.org/10.3390/bioengineering8090123