DOI QR코드

DOI QR Code

Hippo Signal Transduction Mechanisms in T Cell Immunity

  • Received : 2020.08.25
  • Accepted : 2020.09.23
  • Published : 2020.10.31

Abstract

Hippo signaling pathways are evolutionarily conserved signal transduction mechanisms mainly involved in organ size control, tissue regeneration, and tumor suppression. However, in mammals, the primary role of Hippo signaling seems to be regulation of immunity. As such, humans with null mutations in STK4 (mammalian homologue of Drosophila Hippo; also known as MST1) suffer from recurrent infections and autoimmune symptoms. Although dysregulated T cell homeostasis and functions have been identified in MST1-deficient human patients and mouse models, detailed cellular and molecular bases of the immune dysfunction remain to be elucidated. Although the canonical Hippo signaling pathway involves transcriptional co-activator Yes-associated protein (YAP) or transcriptional coactivator with PDZ motif (TAZ), the major Hippo downstream signaling pathways in T cells are YAP/TAZ-independent and they widely differ between T cell subsets. Here we will review Hippo signaling mechanisms in T cell immunity and describe their implications for immune defects found in MST1-deficient patients and animals. Further, we propose that mutual inhibition of Mst and Akt kinases and their opposing roles on the stability and function of forkhead box O and β-catenin may explain various immune defects discovered in mutant mice lacking Hippo signaling components. Understanding these diverse Hippo signaling pathways and their interplay with other evolutionarily-conserved signaling components in T cells may uncover molecular targets relevant to vaccination, autoimmune diseases, and cancer immunotherapies.

Keywords

Acknowledgement

The authors' research is funded by Canadian Institutes of Health Research (Operating grant PJT 159526, Suh WK), Fonds de recherche du Quebec-Sante (Master's Award to Li J; Ph.D. Studentship to Witalis M and Panneton V).

References

  1. Meng Z, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation. Genes Dev 2016;30:1-17. https://doi.org/10.1101/gad.274027.115
  2. Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y, Lauwers GY, Thasler W, Lee JT, Avruch J, et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 2009;16:425-438. https://doi.org/10.1016/j.ccr.2009.09.026
  3. Lu L, Li Y, Kim SM, Bossuyt W, Liu P, Qiu Q, Wang Y, Halder G, Finegold MJ, Lee JS, et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci U S A 2010;107:1437-1442. https://doi.org/10.1073/pnas.0911427107
  4. Song H, Mak KK, Topol L, Yun K, Hu J, Garrett L, Chen Y, Park O, Chang J, Simpson RM, et al. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci U S A 2010;107:1431-1436. https://doi.org/10.1073/pnas.0911409107
  5. Chen X, Li Y, Luo J, Hou N. Molecular mechanism of Hippo-YAP1/TAZ pathway in heart development, disease, and regeneration. Front Physiol 2020;11:389.
  6. Ouyang T, Meng W, Li M, Hong T, Zhang N. Recent advances of the Hippo/YAP signaling pathway in brain development and glioma. Cell Mol Neurobiol 2020;40:495-510. https://doi.org/10.1007/s10571-019-00762-9
  7. Ueda Y, Kondo N, Kinashi T. MST1/2 balance immune activation and tolerance by orchestrating adhesion, transcription, and organelle dynamics in lymphocytes. Front Immunol 2020;11:733.
  8. Kulkarni A, Chang MT, Vissers JH, Dey A, Harvey KF. The Hippo pathway as a driver of select human cancers. Trends Cancer 2020;6:781-796. https://doi.org/10.1016/j.trecan.2020.04.004
  9. Abdollahpour H, Appaswamy G, Kotlarz D, Diestelhorst J, Beier R, Schaffer AA, Gertz EM, Schambach A, Kreipe HH, Pfeifer D, et al. The phenotype of human STK4 deficiency. Blood 2012;119:3450-3457. https://doi.org/10.1182/blood-2011-09-378158
  10. Nehme NT, Schmid JP, Debeurme F, Andre-Schmutz I, Lim A, Nitschke P, Rieux-Laucat F, Lutz P, Picard C, Mahlaoui N, et al. MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T-cell survival. Blood 2012;119:3458-3468. https://doi.org/10.1182/blood-2011-09-378364
  11. Crequer A, Picard C, Patin E, D'Amico A, Abhyankar A, Munzer M, Debre M, Zhang SY, de Saint-Basile G, Fischer A, et al. Inherited MST1 deficiency underlies susceptibility to EV-HPV infections. PLoS One 2012;7:e44010.
  12. Halacli SO, Ayvaz DC, Sun-Tan C, Erman B, Uz E, Yilmaz DY, Ozgul K, Tezcan I, Sanal O. STK4 (MST1) deficiency in two siblings with autoimmune cytopenias: a novel mutation. Clin Immunol 2015;161:316-323. https://doi.org/10.1016/j.clim.2015.06.010
  13. Dang TS, Willet JD, Griffin HR, Morgan NV, O'Boyle G, Arkwright PD, Hughes SM, Abinun M, Tee LJ, Barge D, et al. Defective leukocyte adhesion and chemotaxis contributes to combined immunodeficiency in humans with autosomal recessive MST1 deficiency. J Clin Immunol 2016;36:117-122. https://doi.org/10.1007/s10875-016-0232-2
  14. Choi J, Oh S, Lee D, Oh HJ, Park JY, Lee SB, Lim DS. Mst1-FoxO signaling protects naive T lymphocytes from cellular oxidative stress in mice. PLoS One 2009;4:e8011. 
  15. Ueda Y, Katagiri K, Tomiyama T, Yasuda K, Habiro K, Katakai T, Ikehara S, Matsumoto M, Kinashi T. Mst1 regulates integrin-dependent thymocyte trafficking and antigen recognition in the thymus. Nat Commun 2012;3:1098.
  16. Du X, Shi H, Li J, Dong Y, Liang J, Ye J, Kong S, Zhang S, Zhong T, Yuan Z, et al. Mst1/Mst2 regulate development and function of regulatory T cells through modulation of FoxO1/FoxO3 stability in autoimmune disease. J Immunol 2014;192:1525-1535. https://doi.org/10.4049/jimmunol.1301060
  17. Tomiyama T, Ueda Y, Katakai T, Kondo N, Okazaki K, Kinashi T. Antigen-specific suppression and immunological synapse formation by regulatory T cells require the Mst1 kinase. PLoS One 2013;8:e73874.
  18. Li J, Du X, Shi H, Deng K, Chi H, Tao W. Mammalian sterile 20-like kinase 1 (Mst1) enhances the stability of forkhead box P3 (Foxp3) and the function of regulatory T cells by modulating Foxp3 acetylation. J Biol Chem 2015;290:30762-30770. https://doi.org/10.1074/jbc.M115.668442
  19. Bagherzadeh Yazdchi S, Witalis M, Meli AP, Leung J, Li X, Panneton V, Chang J, Li J, Nutt SL, Johnson RL, et al. Hippo pathway kinase Mst1 is required for long-lived humoral immunity. J Immunol 2019;202:69-78. https://doi.org/10.4049/jimmunol.1701407
  20. Glantschnig H, Rodan GA, Reszka AA. Mapping of MST1 kinase sites of phosphorylation. Activation and autophosphorylation. J Biol Chem 2002;277:42987-42996. https://doi.org/10.1074/jbc.M208538200
  21. Stampouloglou E, Cheng N, Federico A, Slaby E, Monti S, Szeto GL, Varelas X. Yap suppresses T-cell function and infiltration in the tumor microenvironment. PLoS Biol 2020;18:e3000591.
  22. Thaventhiran JE, Hoffmann A, Magiera L, de la Roche M, Lingel H, Brunner-Weinzierl M, Fearon DT. Activation of the Hippo pathway by CTLA-4 regulates the expression of Blimp-1 in the CD8+ T cell. Proc Natl Acad Sci U S A 2012;109:E2223-E2229. https://doi.org/10.1073/pnas.1209115109
  23. Geng J, Yu S, Zhao H, Sun X, Li X, Wang P, Xiong X, Hong L, Xie C, Gao J, et al. The transcriptional coactivator TAZ regulates reciprocal differentiation of TH17 cells and Treg cells. Nat Immunol 2017;18:800-812. https://doi.org/10.1038/ni.3748
  24. Mou F, Praskova M, Xia F, Van Buren D, Hock H, Avruch J, Zhou D. The Mst1 and Mst2 kinases control activation of rho family GTPases and thymic egress of mature thymocytes. J Exp Med 2012;209:741-759. https://doi.org/10.1084/jem.20111692
  25. Katagiri K, Katakai T, Ebisuno Y, Ueda Y, Okada T, Kinashi T. Mst1 controls lymphocyte trafficking and interstitial motility within lymph nodes. EMBO J 2009;28:1319-1331. https://doi.org/10.1038/emboj.2009.82
  26. Tang F, Gill J, Ficht X, Barthlott T, Cornils H, Schmitz-Rohmer D, Hynx D, Zhou D, Zhang L, Xue G, et al. The kinases NDR1/2 act downstream of the Hippo homolog MST1 to mediate both egress of thymocytes from the thymus and lymphocyte motility. Sci Signal 2015;8:ra100.
  27. Katagiri K, Imamura M, Kinashi T. Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion. Nat Immunol 2006;7:919-928. https://doi.org/10.1038/ni1374
  28. Xu X, Jaeger ER, Wang X, Lagler-Ferrez E, Batalov S, Mathis NL, Wiltshire T, Walker JR, Cooke MP, Sauer K, et al. Mst1 directs Myosin IIa partitioning of low and higher affinity integrins during T cell migration. PLoS One 2014;9:e105561.
  29. Burkhardt JK, Carrizosa E, Shaffer MH. The actin cytoskeleton in T cell activation. Annu Rev Immunol 2008;26:233-259. https://doi.org/10.1146/annurev.immunol.26.021607.090347
  30. Hogg N, Patzak I, Willenbrock F. The insider's guide to leukocyte integrin signalling and function. Nat Rev Immunol 2011;11:416-426. https://doi.org/10.1038/nri2986
  31. Kondo N, Ueda Y, Kita T, Ozawa M, Tomiyama T, Yasuda K, Lim DS, Kinashi T. NDR1-dependent regulation of kindlin-3 controls high-affinity LFA-1 binding and immune synapse organization. Mol Cell Biol 2017;37:e00424-16. 
  32. Xu X, Wang X, Todd EM, Jaeger ER, Vella JL, Mooren OL, Feng Y, Hu J, Cooper JA, Morley SC, et al. Mst1 kinase regulates the actin-bundling protein L-plastin to promote T cell migration. J Immunol 2016;197:1683-1691. https://doi.org/10.4049/jimmunol.1600874
  33. Nishikimi A, Ishihara S, Ozawa M, Etoh K, Fukuda M, Kinashi T, Katagiri K. Rab13 acts downstream of the kinase Mst1 to deliver the integrin LFA-1 to the cell surface for lymphocyte trafficking. Sci Signal 2014;7:ra72.
  34. Waldt N, Seifert A, Demiray YE, Devroe E, Turk BE, Reichardt P, Mix C, Reinhold A, Freund C, Muller AJ, et al. Filamin A phosphorylation at serine 2152 by the serine/threonine kinase Ndr2 controls TCR-induced LFA-1 activation in T cells. Front Immunol 2018;9:2852.
  35. Raab M, Wang H, Lu Y, Smith X, Wu Z, Strebhardt K, Ladbury JE, Rudd CE. T cell receptor "inside-out" pathway via signaling module SKAP1-RapL regulates T cell motility and interactions in lymph nodes. Immunity 2010;32:541-556. https://doi.org/10.1016/j.immuni.2010.03.007
  36. Kliche S, Worbs T, Wang X, Degen J, Patzak I, Meineke B, Togni M, Moser M, Reinhold A, Kiefer F, et al. CCR7-mediated LFA-1 functions in T cells are regulated by 2 independent ADAP/SKAP55 modules. Blood 2012;119:777-785. https://doi.org/10.1182/blood-2011-06-362269
  37. Shi H, Liu C, Tan H, Li Y, Nguyen TL, Dhungana Y, Guy C, Vogel P, Neale G, Rankin S, et al. Hippo kinases Mst1 and Mst2 sense and amplify IL-2R-STAT5 signaling in regulatory T cells to establish stable regulatory activity. Immunity 2018;49:899-914.e6. https://doi.org/10.1016/j.immuni.2018.10.010
  38. Webb AE, Kundaje A, Brunet A. Characterization of the direct targets of FoxO transcription factors throughout evolution. Aging Cell 2016;15:673-685. https://doi.org/10.1111/acel.12479
  39. Hedrick SM, Hess Michelini R, Doedens AL, Goldrath AW, Stone EL. FoxO transcription factors throughout T cell biology. Nat Rev Immunol 2012;12:649-661. https://doi.org/10.1038/nri3278
  40. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857-868. https://doi.org/10.1016/S0092-8674(00)80595-4
  41. Stone EL, Pepper M, Katayama CD, Kerdiles YM, Lai CY, Emslie E, Lin YC, Yang E, Goldrath AW, Li MO, et al. ICOS coreceptor signaling inactivates the transcription factor FoxO1 to promote Tfh cell differentiation. Immunity 2015;42:239-251. https://doi.org/10.1016/j.immuni.2015.01.017
  42. Weber JP, Fuhrmann F, Feist RK, Lahmann A, Al Baz MS, Gentz LJ, Vu Van D, Mages HW, Haftmann C, Riedel R, et al. ICOS maintains the T follicular helper cell phenotype by down-regulating Kruppel-like factor 2. J Exp Med 2015;212:217-233. https://doi.org/10.1084/jem.20141432
  43. Lee JY, Skon CN, Lee YJ, Oh S, Taylor JJ, Malhotra D, Jenkins MK, Rosenfeld MG, Hogquist KA, Jameson SC. The transcription factor KLF2 restrains CD4+ T follicular helper cell differentiation. Immunity 2015;42:252-264. https://doi.org/10.1016/j.immuni.2015.01.013
  44. Yasuda K, Ueda Y, Ozawa M, Matsuda T, Kinashi T. Enhanced cytotoxic T-cell function and inhibition of tumor progression by Mst1 deficiency. FEBS Lett 2016;590:68-75. https://doi.org/10.1002/1873-3468.12045
  45. Rao RR, Li Q, Gubbels Bupp MR, Shrikant PA. Transcription factor FoxO1 represses T-bet-mediated effector functions and promotes memory CD8+ T cell differentiation. Immunity 2012;36:374-387. https://doi.org/10.1016/j.immuni.2012.01.015
  46. Jang SW, Yang SJ, Srinivasan S, Ye K. Akt phosphorylates MstI and prevents its proteolytic activation, blocking FoxO3 phosphorylation and nuclear translocation. J Biol Chem 2007;282:30836-30844. https://doi.org/10.1074/jbc.M704542200
  47. Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK, et al. A conserved MST-FoxO signaling pathway mediates oxidative-stress responses and extends life span. Cell 2006;125:987-1001.  https://doi.org/10.1016/j.cell.2006.03.046
  48. Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 2017;169:985-999. https://doi.org/10.1016/j.cell.2017.05.016
  49. Staal FJ, Luis TC, Tiemessen MM. Wnt signalling in the immune system: Wnt is spreading its wings. Nat Rev Immunol 2008;8:581-593. https://doi.org/10.1038/nri2360
  50. Cong F, Schweizer L, Varmus H. Casein kinase Iepsilon modulates the signaling specificities of dishevelled. Mol Cell Biol 2004;24:2000-2011. https://doi.org/10.1128/MCB.24.5.2000-2011.2004
  51. Johnson JL, Georgakilas G, Petrovic J, Kurachi M, Cai S, Harly C, Pear SW, Bhandoola A, Wherry EJ, Vahedi G. Lineage-determining transcription factor TCF-1 initiates the epigenetic identity of T cells. Immunity 2018;48:243-257.e10. https://doi.org/10.1016/j.immuni.2018.01.012
  52. Yu Q, Sharma A, Oh SY, Moon HG, Hossain MZ, Salay TM, Leeds KE, Du H, Wu B, Waterman ML, et al. T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-gamma. Nat Immunol 2009;10:992-999. https://doi.org/10.1038/ni.1762
  53. Choi YS, Gullicksrud JA, Xing S, Zeng Z, Shan Q, Li F, Love PE, Peng W, Xue HH, Crotty S. LEF-1 and TCF-1 orchestrate T(FH) differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6. Nat Immunol 2015;16:980-990. https://doi.org/10.1038/ni.3226
  54. Wu T, Shin HM, Moseman EA, Ji Y, Huang B, Harly C, Sen JM, Berg LJ, Gattinoni L, McGavern DB, et al. TCF1 is required for the T follicular helper cell response to viral infection. Cell Reports 2015;12:2099-2110. https://doi.org/10.1016/j.celrep.2015.08.049
  55. Xu L, Cao Y, Xie Z, Huang Q, Bai Q, Yang X, He R, Hao Y, Wang H, Zhao T, et al. The transcription factor TCF-1 initiates the differentiation of TFH cells during acute viral infection. Nat Immunol 2015;16:991-999. https://doi.org/10.1038/ni.3229
  56. Shao P, Li F, Wang J, Chen X, Liu C, Xue HH. Cutting edge: Tcf1 instructs T follicular helper cell differentiation by repressing blimp1 in response to acute viral infection. J Immunol 2019;203:801-806. https://doi.org/10.4049/jimmunol.1900581
  57. Ding Y, Shen S, Lino AC, Curotto de Lafaille MA, Lafaille JJ. Beta-catenin stabilization extends regulatory T cell survival and induces anergy in nonregulatory T cells. Nat Med 2008;14:162-169. https://doi.org/10.1038/nm1707
  58. Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z, Wrzesinski C, Boni A, Cassard L, Garvin LM, et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 2009;15:808-813. https://doi.org/10.1038/nm.1982
  59. Jeannet G, Boudousquie C, Gardiol N, Kang J, Huelsken J, Held W. Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory. Proc Natl Acad Sci U S A 2010;107:9777-9782. https://doi.org/10.1073/pnas.0914127107
  60. Zhao DM, Yu S, Zhou X, Haring JS, Held W, Badovinac VP, Harty JT, Xue HH. Constitutive activation of Wnt signaling favors generation of memory CD8 T cells. J Immunol 2010;184:1191-1199. https://doi.org/10.4049/jimmunol.0901199
  61. Lovatt M, Bijlmakers MJ. Stabilisation of β-catenin downstream of T cell receptor signalling. PLoS One 2010;5:e12794.
  62. Xu Y, Banerjee D, Huelsken J, Birchmeier W, Sen JM. Deletion of beta-catenin impairs T cell development. Nat Immunol 2003;4:1177-1182. https://doi.org/10.1038/ni1008
  63. Xu M, Sharma A, Wiest DL, Sen JM. Pre-TCR-induced beta-catenin facilitates traversal through betaselection. J Immunol 2009;182:751-758. https://doi.org/10.4049/jimmunol.182.2.751
  64. Xu F, Wang YL, Chang JJ, Du SC, Diao L, Jiang N, Wang HJ, Ma D, Zhang J. Mammalian sterile 20-like kinase 1/2 inhibits the Wnt/β-catenin signalling pathway by directly binding casein kinase 1ε. Biochem J 2014;458:159-169. https://doi.org/10.1042/BJ20130986
  65. Salojin KV, Hamman BD, Chang WC, Jhaver KG, Al-Shami A, Crisostomo J, Wilkins C, Digeorge-Foushee AM, Allen J, Patel N, et al. Genetic deletion of Mst1 alters T cell function and protects against autoimmunity. PLoS One 2014;9:e98151.