• Title/Summary/Keyword: ordered mesoporous silica

Search Result 27, Processing Time 0.024 seconds

One-step synthesis of dual-transition metal substitution on ionic liquid based N-doped mesoporous carbon for oxygen reduction reaction

  • Byambasuren, Ulziidelger;Jeon, Yukwon;Altansukh, Dorjgotov;Ji, Yunseong;Shul, Yong-Gun
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.53-64
    • /
    • 2016
  • Nitrogen (N)-doped ordered mesoporous carbons (OMCs) with a dual transition metal system were synthesized as non-Pt catalysts for the ORR. The highly nitrogen doped OMCs were prepared by the precursor of ionic liquid (3-methyl-1-butylpyridine dicyanamide) for N/C species and a mesoporous silica template for the physical structure. Mostly, N-doped carbons are promoted by a single transition metal to improve catalytic activity for ORR in PEMFCs. In this study, our N-doped mesoporous carbons were promoted by the dual transition metals of iron and cobalt (Fe, Co), which were incorporated into the N-doped carbons lattice by subsequently heat treatments. All the prepared carbons were characterized by via transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). To evaluate the activities of synthesized doped carbons, linear sweep was recorded in an acidic solution to compare the ORR catalytic activities values for the use in the PEMFC system. The dual transition metal promotion improved the ORR activity compared with the single transition metal promotion, due to the increase in the quaternary nitrogen species from the structural change by the dual metals. The effect of different ratio of the dual metals into the N doped carbon were examined to evaluate the activities of the oxygen reduction reaction.

Rare-Earth Metal Complex-Functionalized Mesoporous Silica for a Potential UV Sensor (잠재적인 UV 센서를 위한 희토류 금속착물이 기능화된 메조다공성 실리카)

  • Sung Soo Park;Mi-Ra Kim;Weontae Oh;Yedam Kim;Yeeun Lee;Youngeon Lee;Kangbeom Ha;Dojun Jung
    • Journal of Adhesion and Interface
    • /
    • v.24 no.4
    • /
    • pp.136-142
    • /
    • 2023
  • In this study, TEOS was used as a silica source, and a triblock copolymer (P123) was used as a template to produce mesoporous silica with a well-ordered hexagonal mesopore array through a self-assembly method and hydrothermal process under acidic condition. (Surfactant-extracted SBA-15). Surfactant-extracted SBA-15 showed the particle shape of a short rod with a size of approximately 980 nm. The surface area and pore diameter were 730 m2g-1 and 70.8 Å, respectively. Meanwhile, aminosilane (3-aminopropyltriethoxysilane, APTES) was grafted into the mesopores using a post-synthesis method. Mesoporous silica (APTES-SBA-15) modified with aminosilane had a well-ordered pore structure (p6mm) and well-maintained the particle shape of short rods. The surface area and pore diameter of APTES-SBA-15 decreased to 350 m2g-1 and 60.7 Å, respectively. APTES-modified mesoporous silica was treated with a solution of rare earth metal ions (Eu3+, Tb3+) to synthesize a mesoporous silica material in which rare earth metal complexes were introduced into the mesopores. (Eu/APTES-SBA-15, Tb/APTES-SBA-15) These materials exhibited characteristic photoluminescence spectra by λex=250 nm. (5D47F5 (543.5 nm), 5D47F4 (583.5 nm), 5D47F3 (620.2 nm) transitions for Tb/APTES-SBA-15; 5D07F0 (577.7 nm), 5D07F1 (592.0 nm), 5D07F2 (614.9 nm), 5D07F3 (650.3 nm) and 5D07F4 (698.5 nm) transitions for Eu/APTES-SBA-15)

Highly Ordered Mesoporous Metal Oxides as Catalysts for Dehydrogenation of Cyclohexanol (메조기공을 갖는 다양한 금속 산화물 촉매를 이용한 사이클로헥사놀의 탈수소화 반응)

  • Lee, Eunok;Jin, Mingshi;Kim, Ji Man
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.518-522
    • /
    • 2013
  • Cyclohexanone is important intermediate for the manufacture of caprolactam which is monomer of nylron. Cyclohexanone is generally produced by dehydrogenation reaction of cyclohexanol. In this study, highly mesoporous metal oxides such as meso-$WO_3$, meso-$TiO_2$, meso-$Fe_2O_3$, meso-CuO, meso-$SnO_2$ and meso-NiO were synthesized using mesoporous silica KIT-6 as a hard template via nano-replication method for dehydrogenation of cyclohexanol. The overall conversion of cyclohexanol followed a general order: meso-$WO_3$ >> meso-$Fe_2O_3$ > meso-$SnO_2$ > meso-$TiO_2$ > meso-NiO > meso-CuO. In particular, meso-$WO_3$ significantly showed higher activity than the other mesoporous metal oxides. Therefore, the meso-$WO_3$ has wide range of application possibilities for dehydrogenation of cyclohexanol.

Silica-Pillared H-kenyaites: Interlamellar Base Catalyzed-Reaction of Tetraethlorthosilicate in Water Suspension

  • 권오윤;최상원
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.69-75
    • /
    • 1999
  • The silica-pillared H-kenyaites were prepared by interlarmellar base-catalyzed reaction of tetraethylorthosilicate [TEOS, Si(OC2H5)4] intercalated into the interlayer of H-kenyaite. The intercalation of TEOS was conducted by the octylamine preswelling process, resulting in a dramatic increase in gallery height to 24.7 Å. The interlamellar hydrolysis of octylamine-TEOS/H-kenyaite paste were conducted between 10 min and 40 min in 0.00%, 0.05% and 0.10% NH3-water solution respectively, and resulting in siloxane-pillared H-kenyajte with gallery height of 28.2-31.8 Å. The calcination of samples at 538 ℃ resulted in silica-pillared H-kenyaites with a large surface areas between 411 m2/g and 885 m2/g, depending on the aging time and NH3 concentration. Samples with optimum specific surface areas and well ordered-basal spacing were obtained by reaction between 10 min and 40 min in pure water and 0.05% NH3-water solution. Mesoporous samples with narrow pore size distribution were also prepared by reaction for 10-40 min in 0.05% NH3 solution. Rapid interlamellar reaction of TEOS in pure water showed that intercalated octylamine itself could act as a base catalyst during interlamellar polycondensation of TEOS.

Photochromic Spiropyran-Functionalized Organic-Inorganic Hybrid Mesoporous Silica for Optochemical Gas Sensing (광화학적 가스 센싱을 위한 광변색 스피로피란 개질된 유기-무기 하이브리드 메조포러스 실리카)

  • Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.17 no.4
    • /
    • pp.141-148
    • /
    • 2016
  • In this work, mesoporous silica (SBA-15) was synthesized via self-assembly process using triblock copolymer ($PEO_{20}PPO_{70}PEO_{20}$, P123) as template and tetraethyl orthosilicate (TEOS) as silica source under acidic condition. SBA-15 have high surface area ($704m^2g^{-1}$) and uniform pore size (8.4 nm) with well-ordered hexagonal mesostructure. Spiropyran-functionalized SBA-15 (Spiropyran-SBA-15) was synthesized via post-synthesis process using 3-(triethoxysilyl)propyl isocyanate (TESPI) and 1-(2-Hydroxyethyl)-3,3-dimethy-lindolino-6'-nitrobenzopyrylo-spiran (HDINS). Spiropyran-SBA-15 was produced with hexagonal array of mesopores without damage of mesostructre. Surface area and pore size of Spiropyran-SBA-15 were $651m^2g^{-1}$ and 8.0 nm, respectively. Optochemical properties of Spiropyran-SBA-15 was studied with chemical vapors such as EtOH, THF, $CHCl_3$, Acetone and HCl. Main peaks of photofluorescence of Spiropyran-SBA-15 exhibited blue shift in the range of 603.4~592.1 nm after exposure under EtOH, THF, $CHCl_3$, and Acetone vapors. Normalized peak intensities decreased in the range of 0.8~0.3. The main peak of photofluorescence of Spiropyran-SBA-15 showed significant blue shift of 592.1 nm after exposure under HCl vapor, while normalized peak intensity decreased to 0.1.

Synthesis and Characterization of Cu2+-Perfluorophthalocyanine Incorporated SBA15

  • Oh, Mi-Ok;Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.7 no.3
    • /
    • pp.10-15
    • /
    • 2006
  • After anchoring 3-(2-aminoethylamino)propyltriethoxysilane (APTES) onto the surfaces of the channels within ordered mesoporous silica, SBA-15, we dispersed $Cu^{2+}$-perfluorophthalocyanine into the modified SBA-15 channels. From small-angle X-ray scattering (SAXS) patterns and transmission electron microscopy (TEM) images, we confirmed that both the calcined and $Cu^{2+}$-perfluorophthalocyanine-incorporated SBA-15 samples possessed ordered periodic structures and hexagonal symmetry lattices (p6mm). The value of the $d_{100}$ spacing was decreased after the incorporation of $Cu^{2+}$-perfluorophthalocyanine into the modified SBA-15 channels. We used FTIR and UV-Vis spectroscopy and thermogravimetric analysis (TGA) to characterize both the modified SBA-15 and the $Cu^{2+}$-perfluorophthalocyanine-incorporated SBA-15 samples. From scanning electron microscopy (SEM) images and $N_2$ sorption measurements, we found that the $Cu^{2+}$-perfluorophthalocyanine units were incorporated within the modified SBA-15 channels, rather than on the external surfaces of the modified SBA-15 channels.

  • PDF

Development of the Highly Dispersed Palladium-Nickel Catalysts for Catalytic Partial Oxidation of Methane (메탄 부분산화 반응을 위한 고분산된 팔라듐-니켈 촉매 합성 및 반응)

  • Lee, Seunghyun;Jeon, Jonghyun;Kim, Juchan;Ha, Kyoung-Su
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.269-275
    • /
    • 2021
  • In this study, ordered mesoporous silica-supported Ni catalysts were prepared for catalytic partial oxidation of methane (CPOM) by using electroless nickel plating method. Unlike conventionally impregnated catalysts, the electrolessly-plated nickel catalyst showed that nickel was highly dispersed and formed stably on silica-supported surface. It was verified by TEM-EDS analysis. During the activity tests, the electrolessly-plated nickel was barely sintered and the amount of carbon deposition was very small. Consequently, the catalyst was far less deactivated, while the sintering was significantly observed in the cases of the catalysts prepared by the conventional impregnation method. Regarding the palladium-promoted catalysts, the reducibility of nickel was increased, and the reaction performances were enhanced in terms of CH4 conversion and H2/CO ratio of produced syngas.