DOI QR코드

DOI QR Code

Highly Ordered Mesoporous Metal Oxides as Catalysts for Dehydrogenation of Cyclohexanol

메조기공을 갖는 다양한 금속 산화물 촉매를 이용한 사이클로헥사놀의 탈수소화 반응

  • Lee, Eunok (Department of Chemistry, Sungkyunkwan University) ;
  • Jin, Mingshi (Department of Chemistry, Sungkyunkwan University) ;
  • Kim, Ji Man (Department of Chemistry, Sungkyunkwan University)
  • Received : 2013.05.01
  • Accepted : 2013.06.03
  • Published : 2013.08.01

Abstract

Cyclohexanone is important intermediate for the manufacture of caprolactam which is monomer of nylron. Cyclohexanone is generally produced by dehydrogenation reaction of cyclohexanol. In this study, highly mesoporous metal oxides such as meso-$WO_3$, meso-$TiO_2$, meso-$Fe_2O_3$, meso-CuO, meso-$SnO_2$ and meso-NiO were synthesized using mesoporous silica KIT-6 as a hard template via nano-replication method for dehydrogenation of cyclohexanol. The overall conversion of cyclohexanol followed a general order: meso-$WO_3$ >> meso-$Fe_2O_3$ > meso-$SnO_2$ > meso-$TiO_2$ > meso-NiO > meso-CuO. In particular, meso-$WO_3$ significantly showed higher activity than the other mesoporous metal oxides. Therefore, the meso-$WO_3$ has wide range of application possibilities for dehydrogenation of cyclohexanol.

사이클로헥사논은 나일론의 단량체로 사용되는 카프로락탐의 원료로 중요한 중간체이며 사이클로헥사놀의 탈수소화반응을 통해 합성된다. 본 연구에서는 탈수소화 반응에 적용하기 위한 촉매로 다양한 메조기공을 가진 금속 산화물(meso-$WO_3$, meso-$TiO_2$, meso-$Fe_2O_3$, meso-CuO, meso-$SnO_2$, meso-NiO)을 나노 복제법에 의해 합성하였다. 그 결과 meso-$WO_3$ >> meso-$Fe_2O_3$ > meso-$SnO_2$ > meso-$TiO_2$ > meso-NiO > meso-CuO 순서로 촉매 활성이 나타났으며, 그 중 meso-$WO_3$가 가장 높은 촉매 활성을 보임을 알 수 있었다. 따라서 사이클로헥사놀을 이용한 탈수소화 반응에 meso-$WO_3$의 폭넓은 응용 가능성을 확인하였다.

Keywords

References

  1. Deborah, V. C., Carlos, A. P., Vera, M. M. S. and Martin, S., "Stability and Selectivity of Bimetallic Cu${\pm}$Co/$SiO_{2}$ Catalysts for Cyclohexanol Dehydrogenation," Appl. Catal. A: Gen., 176, 205(1999). https://doi.org/10.1016/S0926-860X(98)00245-2
  2. Jeon, G. S. and Chung, J. S., "Effect of Iron on Cu/$SiO_{2}$ Catalysts for the Dehydrogenation of Cyclohexanol to Cyclohexanone," Korean. J. Chem. Eng., 49, 14(1997).
  3. Samanta, S., Mal, N. K., Manna, A. and Bhaumik, A., "Mesoporous Tin Silicate: An Efficient Liquid Phase Oxidative Dehydrogenation Catalyst," Appl. Catal. A: Gen., 157, 273(2004).
  4. Gao, R., Dai, W. L., Yang, X., Li, H. and Fan, K., "Highly Efficient Tungsten Trioxide Ontaining Mesocellular Silica Foam Catalyst in the O-heterocyclization of Cycloocta-1,5-diene with Aqueous $H_{2}O_{2}$," Appl. Catal. A: Gen., 138, 332(2007).
  5. Djinovic, P., Batista, J., Levec, J. and Pintar, A., "Comparison of Water-gas Shift Reaction Activity and Long-term Stability of Nanostructured $CuO-CeO_{2}$ Catalysts Prepared by Hard Template and co-precipitation Methods," Appl. Catal. A: Gen., 156, 364(2009).
  6. Fridman, V. Z. and Davydov, A. A., "Dehydrogenation of Cyclohexanol on Copper-Containing Catalysts," J. Catal., 195, 20(2000). https://doi.org/10.1006/jcat.2000.2979
  7. Popova, M., Szegedi, A., Lazar, K. and Dimitrova, A., "Dehydrogenation of Cyclohexanol on Fe, Ti-MCM-41 Mesoporous Materials," Catal. Lett., 1288, 141(2011).
  8. Xu, Y., Liu, S., Wang, L., Xie, M. and Guo, X., "Methane Activation Without Using Oxidants over Mo/HZSM-5 Zeolite Catalysts," Catal. Lett., 135, 30(1995).
  9. Blasco, T. and Lopez Nieto J. M., "Oxidative Dehydrogenation of Short Chain Alkanes on Supported Vanadium Oxide Catalysts," Appl. Catal. A: Gen., 117, 157(1997).
  10. Liu, Y. M., Cao, Y., Yi, N., Feng, W. L., Dai, W. L., Yan, S. R., He., H. Y. and Fan, K. N., "Vanadium Oxide Supported on Mesoporous SBA-15 as Highly Selective Catalysts in the Oxidative Dehydrogenation of Propane," J. Catal., 417, 224(2004).
  11. Solsona, B., Blasco, T., Lopez Nieto, J. M., Pen˜ a M. L., Rey, F., and A. V. M., "Vanadium Oxide Supported on Mesoporous MCM-41 as Selective Catalysts in the Oxidative Dehydrogenation of Alkanes," J. Catal., 443, 203(2001).
  12. Taguchi, A. and Schuth, F., "Ordered Mesoporous Materials in Catalysis," Microporous Mesoporous Mater., 77, 1(2005). https://doi.org/10.1016/j.micromeso.2004.06.030
  13. Carreon, M. A. and Guliants, V. V., "Ordered Meso- and Macroporous Binary and Mixed Metal Oxides," Eur. J. Inorg. Chem., 27(2005).
  14. Wang, Y., Yang, C. M., Schnodt, W., Spliethoff, B., Bill, E. and Schüth, F., "Weakly Ferromagnetic Ordered Mesoporous $Co_{3}O_{4}$ Synthesized by Nanocasting from Vinyl-Functionalized Cubic Ia3d Mesoporous Silica," Adv. Mater., 17, 53(2005). https://doi.org/10.1002/adma.200400777
  15. Lyons, D. M., Ryan, K. M. and Morris, M. A., "Preparation of Ordered Mesoporous Ceria with Enhanced Thermal Stability," J. Mater. Chem., 12, 1207(2002). https://doi.org/10.1039/b104677m
  16. Yu, X., Xu, Z. and Han, S., "Gemini Surfactant Controlled Preparation of Well-ordered Lamellar Mesoporous Molybdenum Oxide," J. Porous Mat., 17, 99(2010). https://doi.org/10.1007/s10934-009-9269-4
  17. Zhu, K. K., Yue, B., Zhou, W. Z. and He, H. Y., "Preparation of Three-dimensional Chromium Oxide Porous Single Crystals Templated by SBA-15," Chem. Commun., 349(2003).
  18. T. V. S. and Fuertes, A. B., "High-surface Area Inorganic Compounds Prepared by Nanocasting Techniques," Mater. Res. Bull., 41, 2187(2006). https://doi.org/10.1016/j.materresbull.2006.04.018
  19. Shon, J. K., Kon, S. S. G., Kim, J. M., Ko, C. H., Jin, M., Lee, Y. Y., Hwang, S. H., Yoon, J. A. and Kim, J. N., "Facile Synthesis of Highly Ordered Mesoporous Silver Using Cubic Mesoporous Silica Template with Controlled Surface Hydrophobicity," Chem. Commun., 650(2009).