DOI QR코드

DOI QR Code

Purification of the Waste Water Containing Natural Fatty Oil by Hydroxy Radical and Ozone

수산화라디칼과 오존에 의한 수중 천연 지방산 분해 제거 연구

  • ;
  • 원정하 (한밭대학교 화학생명공학과) ;
  • 김용주 (한밭대학교 화학생명공학과) ;
  • 고장면 (한밭대학교 화학생명공학과) ;
  • 송근한 ((주) 브이케이테크) ;
  • 이창훈 ((주) 브이케이테크)
  • Received : 2013.05.15
  • Accepted : 2013.06.17
  • Published : 2013.08.01

Abstract

In order to purify the waste water containing natural fatty oil, hydroxy radical and/or ozone are used to remove the fatty oil dispersed in the waste water. The fatty oil is decomposed by oxidation reaction through hydroxy radical and ozone, and eliminated as a function of first order reaction. It is clearly confirmed that the fatty oil in waste water can be effectively removed much more in the use of both hydroxy radical and ozone than only hydroxy radical as an oxydant. In addition, the decomposition chemical reaction mechanism of the fatty oil by hydroxy radical and ozone is proposed.

본 연구에서는 수질정화 기술개발을 위하여 수산화라디칼 및 오존 발생기를 이용하여 수중에 존재하는 천연 지방산 분해 제거 연구를 수행하였다. 천연 지방산은 수산화라디칼 및 오존에 의하여 1차 분해반응 형태로 제거되었으며, 천연 지방산의 분해반응에서 수산화라디칼 단독으로 사용하는 것 보다 오존과 함께 사용한 경우 분해 효율을 크게 향상시킬 수 있음을 알 수 있었다. 또한, 천연 지방산이 수산화라디칼과 오존에 의해 분해되는 화학반응 기구를 제안하였다.

Keywords

References

  1. Kwon, T. O., Park, B. B. and Moon, I. S., "Advanced Oxidation Process for the Treatment of Terephthalic Acid Wastewater using UV, $H_{2}O_{2}$ and $O_{3}$: Organic and Color Removal Studies," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 45(6), 648-655(2007).
  2. Ryu, W. R., Cho, M. H., Choi, J. S. and Yang, Y. W., "A Study on Physicochemical Treatment of Terephthalic Acid in Polyester Weight-loss Wastewater," J. KSEE, 20(7), 927-936(1998).
  3. Kang, D. Z., Hong, Y. P. and Lee, J. H., "PCR Detection of Terephthalic Acid Degrading Comamonas Testosterone in Soil," Kor. J. Microbiol. Biotechnol., 31(2), 177-181(2003).
  4. Kim, J. H., Rhee, C. H., Woo, C. J., Joo, G. J., Seo, S. K. and Park, H. D., "Isolation and Characterization of Terephthalic Acid Degrading Bacteria," Kor. J. Appl. Microbiol. Biotechnol., 27(2), 118-123 (1999).
  5. Wang, J., Chen, L., Shi, H. and Qian, Y., "Microbial Degradation of Phthalic Acid Esters Under Anaerobic Digestion of Sludge," Chemosphere, 41(8), 1245-1248(2000). https://doi.org/10.1016/S0045-6535(99)00552-4
  6. Lee, S. M., Jo, H. J., Kim, J. G. and Jung, J. H., "Radiation Treatment of Terephthalic Acid Andethylene Glycol by Using Gammaray," J. KSWQ, 20(5), 452-456(2004).
  7. Lee, J. W., Chung, S. J., Balaji, S., Kokovkin, V. V. and Moon, I. S., "Destruction of EDTA Using Ce(IV) Mediated Electrochemical OXidation: A Simple Modeling Study and Experimental Verification," Chemosphere, 68(6), 1067-1073(2007). https://doi.org/10.1016/j.chemosphere.2007.01.073
  8. Choi, J. W., Song, H. K., Lee, W., Koo, K. K., Han, C., Na, B. K., "Reduction of COD and Color of Acid and Reactive Dyestuff Wastewater Using Ozone," Korean J. Chem. Eng., 21, 398-403 (2004). https://doi.org/10.1007/BF02705427
  9. Ramesh, T., Kwon, T. O., Jun, J. C., Balaji, S., Matheswaran, M. and Moon, I. S., "Application of Several Advanced Oxidation Processes for the Destruction of Terephthalic Acid (TPA)," J. Hazard. Mater., 142(1-2), 308-314(2006).
  10. Andreozzi, R. and Marotta, R., "Removal of Benzoic Acid in Aqueous Solution by Fe(III) Homogeneous Photocatalysis," Water Res., 38(5), 1225-1236(2004). https://doi.org/10.1016/j.watres.2003.11.020
  11. Ramesh, T., Kwon, T. O. and Moon, I. S., "Degradation of Phthalic Acids and Benzoic Acid from Terephthalic Acid Wastewater by Advanced Oxidation Processes," J. Environ. Sci. Health Part A, 41(8), 1685-1697(2006). https://doi.org/10.1080/10934520600754136
  12. Ramesh, T., Kwon, T. O. and Moon, I. S., "Degradation of Phthalic Acids and Benzoic Acid from Terephthalic Acid Wastewater by Advanced Oxidation Processes," J. Environ. Sci. Health Part A, 41(8), 1685-1697(2006). https://doi.org/10.1080/10934520600754136
  13. Guzzella, L., Feretti, D. and Monarca, S., "Advanced Oxidation and Adsorption Technologies for Organic Micropollutant Removal from Lake Water Used as Drinking-water Supply," Water Res., 36(17), 4307-4318(2002). https://doi.org/10.1016/S0043-1354(02)00145-8
  14. Behnajady, M. A., Modirshahla, N. and Fathi, H., "Kinetic of Decolorization of an azo dye in UV Alone and UV/$H_{2}O_{2}$ Processes," J. Hazard. Mater. B, 136(3), 816-821(2006). https://doi.org/10.1016/j.jhazmat.2006.01.017
  15. Hwang, S. H., Bouwer, E. J., Larson, S. L. and Davis, J. L., "Decolorization of Alkaline TNT Hydrolysis Effluents Using UV/$H_{2}O_{2}$," J. Hazard. Mater. B, 108(1-2), 61-67(2004). https://doi.org/10.1016/j.jhazmat.2003.11.016
  16. Jung, J. H., Suh, H. and Mohseni, M., "A Study on the Relationship Between Biodegradability Enhancement and Oxidation of 1,4-dioxane Using Ozone and Hydrogen Peroxide," Water Res., 38(10), 2596-2604(2004). https://doi.org/10.1016/j.watres.2004.03.002
  17. Criegee, R., "Mechanism of Ozonolysis," R. Angew. Chem., 87, 745-752(1975). https://doi.org/10.1002/ange.19750872011
  18. Yoa, S. J., Cho, Y. S. and Kim, J. H., "Photocatalytic Degradation of Toluene with Ozone Addition," Korean J. Chem. Eng., 22, 364-369(2005). https://doi.org/10.1007/BF02719412