• 제목/요약/키워드: ordered k-ideal

검색결과 41건 처리시간 0.024초

INTUITIONISTIC FUZZY IDEALS IN ORDERED SEMIGROUPS

  • Khan, Asghar;Khan, Madad;Hussain, Saqib
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.311-324
    • /
    • 2010
  • We prove that a regular ordered semigroup S is left simple if and only if every intuitionistic fuzzy left ideal of S is a constant function. We also show that an ordered semigroup S is left (resp. right) regular if and only if for every intuitionistic fuzzy left(resp. right) ideal A = <$\mu_A$, $\gamma_A$> of S we have $\mu_A(a)\;=\;\mu_A(a^2)$, $\gamma_A(a)\;=\;\gamma_A(a^2)$ for every $a\;{\in}\;S$. Further, we characterize some semilattices of ordered semigroups in terms of intuitionistic fuzzy left(resp. right) ideals. In this respect, we prove that an ordered semigroup S is a semilattice of left (resp. right) simple semigroups if and only if for every intuitionistic fuzzy left (resp. right) ideal A = <$\mu_A$, $\gamma_A$> of S we have $\mu_A(a)\;=\;\mu_A(a^2)$, $\gamma_A(a)\;=\;\gamma_A(a^2)$ and $\mu_A(ab)\;=\;\mu_A(ba)$, $\gamma_A(ab)\;=\;\gamma_A(ba)$ for all a, $b\;{\in}\;S$.

COINCIDENCES OF DIFFERENT TYPES OF FUZZY IDEALS IN ORDERED Γ-SEMIGROUPS

  • Kanlaya, Arunothai;Iampan, Aiyared
    • Korean Journal of Mathematics
    • /
    • 제22권2호
    • /
    • pp.367-381
    • /
    • 2014
  • The notion of ${\Gamma}$-semigroups was introduced by Sen in 1981 and that of fuzzy sets by Zadeh in 1965. Any semigroup can be reduced to a ${\Gamma}$-semigroup but a ${\Gamma}$-semigroup does not necessarily reduce to a semigroup. In this paper, we study the coincidences of fuzzy generalized bi-ideals, fuzzy bi-ideals, fuzzy interior ideals and fuzzy ideals in regular, left regular, right regular, intra-regular, semisimple ordered ${\Gamma}$-semigroups.

INTUITIONISTIC FUZZY SEMIPRIME IDEALS OF ORDERED SEMIGROUPS

  • Kim, Kyung Ho
    • 충청수학회지
    • /
    • 제22권2호
    • /
    • pp.235-243
    • /
    • 2009
  • In this paper, we introduce the notion of intuitionistic fuzzy semiprimality in an ordered semigroup, which is an extension of fuzzy semiprimality and investigate some properties of intuitionistic fuzzification of the concept of several ideals.

  • PDF

CHARACTERIZING THE MINIMALITY AND MAXIMALITY OF ORDERED LATERAL IDEALS IN ORDERED TERNARY SEMIGROUPS

  • Iampan, Aiyared
    • 대한수학회지
    • /
    • 제46권4호
    • /
    • pp.775-784
    • /
    • 2009
  • In 1932, Lehmer [4] gave the definition of a ternary semigroup. We can see that any semigroup can be reduced to a ternary semigroup. In this paper, we give some auxiliary results which are also necessary for our considerations and characterize the relationship between the (0-)minimal and maximal ordered lateral ideals and the lateral simple and lateral 0-simple ordered ternary semigroups analogous to the characterizations of minimal and maximal left ideals in ordered semigroups considered by Cao and Xu [2].

INTUITIONISTIC FUZZY INTERIOR IDEALS IN ORDERED SEMIGROUPS

  • Shabir, Muhammad;Khan, A.
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1447-1457
    • /
    • 2009
  • In this paper we define intuitionistic fuzzy interior ideals in ordered semigroups. We prove that in regular(resp. intra-regular and semisimple) ordered semigroups the concepts of intuitionistic fuzzy interior ideals and intuitionistic fuzzy ideals coincide. We prove that an ordered semi group is intuitionistic fuzzy simple if and only if every intutionistic fuzzy interior ideal is a constant function. We characterize intra-regular ordered semi groups in terms of interior (resp. intuitionistic fuzzy interior) ideals.

  • PDF

ON (m, n)-IDEALS OF AN ORDERED ABEL-GRASSMANN GROUPOID

  • YOUSAFZAI, FAISAL;KHAN, ASAD;IAMPAN, AIYARED
    • Korean Journal of Mathematics
    • /
    • 제23권3호
    • /
    • pp.357-370
    • /
    • 2015
  • In this paper, we introduce the concept of (m, n)-ideals in a non-associative ordered structure, which is called an ordered Abel-Grassmann's groupoid, by generalizing the concept of (m, n)-ideals in an ordered semigroup [14]. We also study the (m, n)-regular class of an ordered AG-groupoid in terms of (m, n)-ideals.

GENERALIZED BIPOLAR FUZZY INTERIOR IDEALS IN ORDERED SEMIGROUPS

  • Ibrar, Muhammad;Khan, Asghar;Abbas, Fatima
    • 호남수학학술지
    • /
    • 제41권2호
    • /
    • pp.285-300
    • /
    • 2019
  • This research focuses on the characterization of an ordered semigroups (OS) in the frame work of generalized bipolar fuzzy interior ideals (BFII). Different classes namely regular, intra-regular, simple and semi-simple ordered semigroups were characterized in term of $({\alpha},{\beta})$-BFII (resp $({\alpha},{\beta})$-bipolar fuzzy ideals (BFI)). It has been proved that the notion of $({\in},{\in}{\gamma}q)$-BFII and $({\in},{\in}{\gamma}q)$-BFI overlap in semi-simple, regular and intra-regular ordered semigroups. The upper and lower part of $({\in},{\in}{\gamma}q)$-BFII are discussed.

INTUITIONISTIC FUZZY FILTERS OF ORDERED SEMIGROUPS

  • Shabir, M.;Khan, A.
    • Journal of applied mathematics & informatics
    • /
    • 제26권5_6호
    • /
    • pp.1071-1084
    • /
    • 2008
  • The notion of intuitionistic fuzzy filters in ordered semigroups is introduced and relation between intuitionistic fuzzy filters and intuitionistic fuzzy prime ideals is investegated. The notion of intuitionistic fuzzy bi-ideal subsets and intuitionistic fuzzy bi-filters are provided and relation between intuitionistic fuzzy bi-filters and intuitionistic fuzzy prime bi-ideal subsets is established. The concept of intuitionistic fuzzy right filters(1eft filters) is given and their relation with intuitionistic fuzzy prime right (left) ideals is discussed.

  • PDF

(∈, ∈ ∨qk)-FUZZY IDEALS IN LEFT REGULAR ORDERED $\mathcal{LA}$-SEMIGROUPS

  • Yousafzai, Faisal;Khan, Asghar;Khan, Waqar;Aziz, Tariq
    • 호남수학학술지
    • /
    • 제35권4호
    • /
    • pp.583-606
    • /
    • 2013
  • We generalize the idea of (${\in}$, ${\in}{\vee}q_k$)-fuzzy ordered semi-group and give the concept of (${\in}$, ${\in}{\vee}q_k$)-fuzzy ordered $\mathcal{LA}$-semigroup. We show that (${\in}$, ${\in}{\vee}q_k$)-fuzzy left (right, two-sided) ideals, (${\in}$, ${\in}{\vee}q_k$)-fuzzy (generalized) bi-ideals, (${\in}$, ${\in}{\vee}q_k$)-fuzzy interior ideals and (${\in}$, ${\in}{\vee}q_k$)-fuzzy (1, 2)-ideals need not to be coincide in an ordered $\mathcal{LA}$-semigroup but on the other hand, we prove that all these (${\in}$, ${\in}{\vee}q_k$)-fuzzy ideals coincide in a left regular class of an ordered $\mathcal{LA}$-semigroup. Further we investigate some useful conditions for an ordered $\mathcal{LA}$-semigroup to become a left regular ordered $\mathcal{LA}$-semigroup and characterize a left regular ordered $\mathcal{LA}$-semigroup in terms of (${\in}$, ${\in}{\vee}q_k$)-fuzzy one-sided ideals. Finally we connect an ideal theory with an (${\in}$, ${\in}{\vee}q_k$)-fuzzy ideal theory by using the notions of duo and (${\in}{\vee}q_k$)-fuzzy duo.

On Generalised Quasi-ideals in Ordered Ternary Semigroups

  • Abbasi, Mohammad Yahya;Khan, Sabahat Ali;Basar, Abul
    • Kyungpook Mathematical Journal
    • /
    • 제57권4호
    • /
    • pp.545-558
    • /
    • 2017
  • In this paper, we introduce generalised quasi-ideals in ordered ternary semigroups. Also, we define ordered m-right ideals, ordered (p, q)-lateral ideals and ordered n-left ideals in ordered ternary semigroups and studied the relation between them. Some intersection properties of ordered (m,(p, q), n)-quasi ideals are examined. We also characterize these notions in terms of minimal ordered (m,(p, q), n)-quasi-ideals in ordered ternary semigroups. Moreover, m-right simple, (p, q)-lateral simple, n-left simple, and (m,(p, q), n)-quasi simple ordered ternary semigroups are defined and some properties of them are studied.