• Title/Summary/Keyword: optimum treatment condition Mg-zeolite

Search Result 4, Processing Time 0.021 seconds

Manufacturing of Mg-Zeolite Using for Simultaneous Recovery of the N and the P from sewage water (하수로부터 질소(N)와 인(P)을 동시에 회수할 수 있는 Mg-Zeolite의 제조)

  • Cho, Heon-Young;Suh, Jung-Mok
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.122-128
    • /
    • 2003
  • To develop a Mg-Zeolite for simultaneous recovery of the N and the P from sewage water, the natural zeolite was treated with 20% $MgCl_2$ solution by changing the pH the temperature and the treating time of the solution. And the contents of Ca Fe Na K Mg of Mg-Zeolite were analyzed by ICP. The optimum treatment condition for Mg-Zeolite was induced to pH 7.0 $50^{\circ}C$ in 20% $MgCl_2$ solution and for 80min treatment. And the Na and the K ions in natural zeolite are significant factors for Mg exchange in the zeolite.

  • PDF

Zeolite Filtration for Ammonium Nitrogen Removal in Drinking Water Treatment (정수처리에서 암모니아성질소 제거를 위한 제올라이트 여과)

  • 김우항;김충환
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.281-286
    • /
    • 2003
  • This study was conducted to evaluate the feasibility of ammonia removal by zeolite adsorption in drinking water treatment. In generally, drinking water treatment process is conducted coagulation/flocculation, sedimentation, sand filtration and disinfection. We tested feasibility with two method, one is powdered zeolite dosing to coagulation tank and the other is to substitute granular zeolite for sand of sand filter. In powdered zeolite test, raw water is used tap water with putting of 2 mg/l of NH$_4$$\^$+/-N. Filtration of granular zeolite was conducted with 80 cm of effective column high and 120 m/d of flow rate. At above 100 mg/1 of zeolite dosage, ammonia concentration was decreased below 0.5 mg/l of NH$_4$$\^$+/-N in powdered zeolite test. But, turbidity was increased to 30 NTU by powdered zeolite dosage. That turbidity was scarcely decreased in generally coagulant using condition in drinking water treatment. In granular zeolite test, ammonia was not detected in treated water until 8 days. This result suggest that using of granular zeolite in sand filter could be removal ammonia in winter. But we need regeneration at zeolite filtration for ammonia removal. So, it is to make clear that zeolite regeneration ability was compared KCl with NaCl. The result reveal that KCl was more excellent than NaCl. Optimum regeneration concentration of KCl was revealed 100 mM. Regeneration efficient was not increased at pH range 10∼12.5.

A Study on the Modification of NH4+Y-zeolite for Improving Adsorption/Desorption Performance of Benzene (NH4+Y-zeolite의 개질을 통한 벤젠 흡·탈착 성능 증진 연구)

  • Jang, Young Hee;Noh, Young Il;Lee, Sang Moon;Kim, Sung Su
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • A.C (activated carbon) is mainly used to remove VOCs (volatile organic compounds), however, it has many problems such as fire risk due to increasing of adsorbent surface temperature during VOCs ad/desorption, increased cost by frequent replacement cycles requirement and performance degradation when containing moisture. In order to solve these problems, many researches, hydrophobic zeolite adsorbents, have been reported. In this study, $NH_4{^+}Y$-zeolite was synthesized with Y-zeolite through steam treatment and acid treatment, which is one of the hydrophobic modification methods, to secure high surface area, thermal stability and humidity resistance. The Y, Y-550-HN, Y-600-HN and Y-650-HN had adsorption capacities of $23mg\;g^{-1}$, $38mg\;g^{-1}$, $77mg\;g^{-1}$, $61mg\;g^{-1}$. The change of Si/Al ratio, which is an index to confirm the degree of modification, was confirmed by XRF (X-ray fluorescence spectrometer) analysis. As a result, the adsorbtion performance was improved when Y-zeolite modified, and the Si/Al ratio of Y, Y-550-HN, Y-600-HN, Y-650-HN were increased to 3.1765, 6.6706, 7.3079, and 7.4635, respectively. Whereas it was confirmed that structural crystallization due to high heat treatment temperature affected performance degradation. Therefore, there is an optimal heat treatment temperature of Y-zeolite, optimum modification condition study could be a substitute for activated carbon as a condition for producing an adsorbent having high durability and stability.

Preparation of Novel PS-zeolite Beads Immobilized Zeolite with Polysulfone for Radioactive Materials (Polysulfone으로 제올라이트 A를 고정화한 방사성 물질제거용 PS-zeolite 비드 제조)

  • Lee, Chang-Han;Park, Jeong-Min;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.3
    • /
    • pp.145-151
    • /
    • 2015
  • In order to remove Sr ions and Cs ions from aqueous solution, PS-zeolite beads were prepared by immobilizing zeolite with polysulfone (PS). The prepared PS-zeolite beads were characterized by SEM, XRD, FT-IR, and TGA. The optimum condition to prepare PS-zeolite beads was 1.25 g of PS content and 2 g of zeolite A. The removal efficiencies of Sr and Cs ions by the PS-zeolite beads increased as the solution pH increases and nearly reached a plateau at pH 4. The PS-zeolite beads prepared in this study showed a remarkably high selectivity for Sr ion and Cs ion under the coexistence of ions such as $Na^+$, $K^+$, $Mg^{2+}$, and $Ca^{2+}$. Zeolite particles detached from the PS-zeolite beads were not observed on this experiments, and also the PS-zeolite beads maintained the morphological structure on a SEM image. The removal efficiencies of Sr ions and Cs ions by PS-zeolite beads were maintained over 90% even after five adsorption-desorption cycles. These results implied that the prepared PS-zeolite beads could be an available adsorbent for the adsorption of Sr and Cs ions. These results suggest that the PS-zeolite can potentially be used as an adsorbent in radioactive ions removal for the treatment of industrial wastewater.