Figure 1. Nitrogen oxide photochemical mechanism (a) typical or (b) involving VOCs.
Figure 3. Schematic diagram of zeolite adsorption tower apparatus.
Figure 2. Preparation procedure of hydrophobic Y-zeolite.
Figure 4. Adsorption performance of different steam temperature on the Y, Y-550-HN, Y-600-HN, Y-650-HN (conditions: 35% R.H., 250 ppm benzene, 400 mL min-1 flow, absorbent: 0.1 g).
Figure 5. XRD patterns of Y, Y-550-HN, Y-600-HN and Y-650-HN.
Figure 6. Pore size distribution of Y, Y-550-HN, Y-600-HN and Y-650-HN.
Figure 7. Re-adsorption of benzene over Y-600-HN (conditions : 0% R.H., 250 ppm benzene, 400 mL min-1 flow, absorbent : 0.05 g).
Figure 8. Desorption performance of benzene with different flow rate (conditions : 0% R.H., absorbent : 0.05 g).
Table 1. XRF analysis of Y, Y-550-HN, Y-600-HN, Y-650-HN
Table 2. Surface area, pore volume and average pore size of Y, Y-550-HN, Y-600-HN, Y-650-HN
Table 3. Desorption amounts of benzene with different flow rate
References
- EEA Report No 13/2017, Air Quality in Europe ISBN 978-92-9213-920-9.
- Papaefthimiou, P., Ioannides, T., and Verykios, X. E., "Catalytic Incineration of Volatile Organic Compounds Present in Industrial Waste Streams," Appl. Therm. Eng., 18(11), 1005-1012 (1998). https://doi.org/10.1016/S1359-4311(98)00021-0
- Crawmer, J., Chen, C. H., Richard, B., Zelinsky, R., and Pearlman, H., "An Innovative Volatile Organic Compound Incinerator," 10th U. S. National Combustion Meeting, April 23-26, College Park, Maryland (2017).
- Huang, Y., Ho, S. S. H., Lu, Y., Niu, R., Xu, L., Cao, J., and Lee, S., "Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect," Molecules, 21(56), 1-20 (2016). https://doi.org/10.3390/molecules21010001
-
Suarez, S., Jansson, I., Ohtani, B., and Sanchez, B., "From Titania Nanoparticles to Decahedral Anatase Particles: Photocatalytic Activity of
$TiO_2$ /Zeolite Hybrids for VOCs Oxidation," Catal. Today, Doi: https://doi.org/10.1016/j.cattod.2018.09.004. - Fernandes, A. C., and Pires, J., "Adsorption of Volatile Organic Compounds on Zeolite L," J. Chem. Eng. Data, 61(11), 3890-3896 (2016). https://doi.org/10.1021/acs.jced.6b00624
- Zhange, X., Gao, B., Creamer, A. E., Cao, C., and Li, Y., "Adsorption of VOCs onto Engineered Carbon Materials: A Review," J. Hazard. Mater., 338(15), 102-123 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013
- Chue, K., Park, Y., and Jeon, J., "Development of Adsorption Buffer and Pressure Swing Adsorption (PSA) Unit for Gasoline Vapor Recovery," Korean J. Chem. Eng., 21(3), 676-679 (2007). https://doi.org/10.1007/BF02705504
-
Wang, H., Yang, W., Tian, P., Zhou, J., Tang, R., and Wu, S., "A Highly Active and Anti-Coking Pd-Pt/
$SiO_2$ Catalyst for Catalytic Combustion of Toluene at Low Temperature," Appl. Catat. A: Gen., 529(5), 60-67 (2017). https://doi.org/10.1016/j.apcata.2016.10.016 - Papaefthimiou, P., ioannides, T., and Verykios, X. E., "Catalytic Incineration of Volatile Organic Compounds Present in Industrial Waste Streams," Appl. Therm. Eng., 18(11), 1005-1012 (1998). https://doi.org/10.1016/S1359-4311(98)00021-0
- Yun, J. H., Choi, D. K., and Kim, S. H., "Equilibria and Dynamics for Mixed Vapors of BTX in an Activated Carbon Bed," AIChE J., 45(4), 751-760 (1999). https://doi.org/10.1002/aic.690450410
- Kang, S. W., Min, B. H., and Suh, S. S., "A Study on Cleaning Process for Benzene Recovery in Activated Carbon Bed," J. Korean Oil Chemists' Soc., 19, 108-116 (2002).
- Ritter J. A., and Yang, R. T., "Air Purification and Vapor Recovery by Pressure Swing Adsorption: A Comparison of Silicalite and Activated Carbon," Chem. Eng. Commun., 108(1), 289-305 (1991). https://doi.org/10.1080/00986449108910963
- Zhu, L., Tian, S., and Shi, Y., "Adsorption of Volatile Organic Compounds onto Porous Clay Heterostructures Based on Spent Organobentonites," Clays and Clay Minerals, 53(2), 123-136 (2005). https://doi.org/10.1346/CCMN.2005.0530202
- Dumont, E., Darracq, G., Couvert, A., Couriol, C., Amrane, A., Thomas, D., Andres, Y., and Cloirec, P. L., "VOC Absorption in a Countercurrent Packed-Bed Column Using Water/Silicone Oil Mixtures: Influence of Silicone Oil Volume Fraction," Chem. Eng. J., 168(1), 574-248 (2011).
- Heymes, F., Demoustier, P. M., Charbit, F., Fanlo, J. L., and Moulin, P., "Treatment of Gas Containing Hydrophobic VOCs by a Hybrid Absorption-Pervaporation Process: The Case of Toluene," Chem. Eng. Sci., 62(9), 2576-2589 (2007). https://doi.org/10.1016/j.ces.2007.02.001
- Heymes, F., Demoustier, P. M., Charbit, F., Fanlo, J. L., and Moulin, P., "A New Efficient Absorption Liquid to Treat Exhaust Air Loaded with Toluene," Chem. Eng. J., 115(3), 225-231 (2006). https://doi.org/10.1016/j.cej.2005.10.011
- https://doi.org/10.1007/s11270-013-1528-y, (Accessed Nov. 2018).
- Hamad, A., and Fayed, M. E., "Simulation-Aided Optimization of Volatile Organic Compounds Recovery Using Condensation," IChemE., 82(7), 895-906 (2004). https://doi.org/10.1205/0263876041596724
-
Kim, J. Y., Jeon, D. H., Chung, B. H., and Mo, S. Y., "Dealumination of
$NH_4^^+Y$ -zeolite to Convert to the Hydrophobic Zeolite by High-Temperature Steam Treatment," J. KSEE., 27(4), 420-430 (2005). - Severance, M. A., "Nanocrystalline Zeolite: Synthesis, Mechanism, and Applications," Ph.D. Dissertation, University of Ohio State, Columbus (2014).
- Barthomeuf, D., "Basic Zeolites: Characterization and uses in Adsorption and Catalysis," Catal. Rev. Sci. Eng., 38(4), 521-612 (1996). https://doi.org/10.1080/01614949608006465
- Weitkamp, J., Weiss, U., and Ernst, S., "New Aspects and Trends in Zeolite Catalysis," Catal. Microp, Mater., 94, 363-380 (1995).
- Smirniotis, P. G., Davydov, L., and Ruckenstein, E., "Composite Zeolitebased Catalysts and Sorbents," Catal. Rev. Sci. Eng., 41(1) 43-113 (1999). https://doi.org/10.1081/CR-100101949
- Kim, J. Y., Jeon, D. H., Kim, M. S., and Mo, S. Y., "Change of Si/Al on the Acid-dealumination of Y Type Zeolite and Water Adsorption," Paper No. D-3-2, J. KSEE., Busan (April. 2004).