DOI QR코드

DOI QR Code

A Study on the Modification of NH4+Y-zeolite for Improving Adsorption/Desorption Performance of Benzene

NH4+Y-zeolite의 개질을 통한 벤젠 흡·탈착 성능 증진 연구

  • Jang, Young Hee (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Noh, Young Il (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Lee, Sang Moon (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
  • 장영희 (경기대학교 일반대학원 환경에너지공학과) ;
  • 노영일 (경기대학교 일반대학원 환경에너지공학과) ;
  • 이상문 (경기대학교 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2018.11.14
  • Accepted : 2019.01.02
  • Published : 2019.03.30

Abstract

A.C (activated carbon) is mainly used to remove VOCs (volatile organic compounds), however, it has many problems such as fire risk due to increasing of adsorbent surface temperature during VOCs ad/desorption, increased cost by frequent replacement cycles requirement and performance degradation when containing moisture. In order to solve these problems, many researches, hydrophobic zeolite adsorbents, have been reported. In this study, $NH_4{^+}Y$-zeolite was synthesized with Y-zeolite through steam treatment and acid treatment, which is one of the hydrophobic modification methods, to secure high surface area, thermal stability and humidity resistance. The Y, Y-550-HN, Y-600-HN and Y-650-HN had adsorption capacities of $23mg\;g^{-1}$, $38mg\;g^{-1}$, $77mg\;g^{-1}$, $61mg\;g^{-1}$. The change of Si/Al ratio, which is an index to confirm the degree of modification, was confirmed by XRF (X-ray fluorescence spectrometer) analysis. As a result, the adsorbtion performance was improved when Y-zeolite modified, and the Si/Al ratio of Y, Y-550-HN, Y-600-HN, Y-650-HN were increased to 3.1765, 6.6706, 7.3079, and 7.4635, respectively. Whereas it was confirmed that structural crystallization due to high heat treatment temperature affected performance degradation. Therefore, there is an optimal heat treatment temperature of Y-zeolite, optimum modification condition study could be a substitute for activated carbon as a condition for producing an adsorbent having high durability and stability.

활성탄(activated carbon, A.C)은 휘발성 유기화합물(volatile organic compounds, VOCs) 제거를 위해 가장 많이 사용되고 있지만 흡/탈착 시 열화현상으로 인한 화재위험성, 잦은 교체 주기로 인한 비용 부담, 수분에 의한 성능 저하 등의 문제점을 가지고 있다. 이러한 문제들을 해결하기 위하여 소수성 제올라이트 흡착제가 연구되고 있다. 본 연구에서는 소수성 개질법 중 하나인 수증기처리 및 산 처리를 통해 $NH_4{^+}Y$-zeolite를 소수성 Y-zeolite로 합성하여 높은 표면적, 열적 안정성과 습도저항성을 확보하고자 하였다. Y-zeolite와 개질된 Y-550-HN, Y-600-HN, Y-650-HN의 흡착성능은 23, 38, 77, $61mg\;g^{-1}$으로 나타났으며, 소수성 개질 정도를 확인할 수 있는 지표인 Si/Al ratio 변화를 XRF 분석으로 확인하였다. 그 결과, Y-zeolite를 개질하였을 때 흡착성능이 증진되었고, Si/Al 비는 Y, Y-550-HN, Y-600-HN, Y-650-HN 순으로 각각 3.1765, 6.6706, 7.3079, 7.4635 임을 확인하였다. 반면에 높은 열처리 온도에 의한 구조적 결정화가 성능 저하에 영향을 미칠 수 있음을 확인하였다. 반면에 Y-zeolite의 최적 열처리 온도가 존재하며, 이와 같은 최적 개질 조건 연구는 높은 내구성과 안정성을 갖는 흡착제를 제조할 수 있는 조건으로써 향후 활성탄을 대체할 수 있을 것으로 판단하였다.

Keywords

CJGSB2_2019_v25n1_33_f0001.png 이미지

Figure 1. Nitrogen oxide photochemical mechanism (a) typical or (b) involving VOCs.

CJGSB2_2019_v25n1_33_f0002.png 이미지

Figure 3. Schematic diagram of zeolite adsorption tower apparatus.

CJGSB2_2019_v25n1_33_f0003.png 이미지

Figure 2. Preparation procedure of hydrophobic Y-zeolite.

CJGSB2_2019_v25n1_33_f0004.png 이미지

Figure 4. Adsorption performance of different steam temperature on the Y, Y-550-HN, Y-600-HN, Y-650-HN (conditions: 35% R.H., 250 ppm benzene, 400 mL min-1 flow, absorbent: 0.1 g).

CJGSB2_2019_v25n1_33_f0005.png 이미지

Figure 5. XRD patterns of Y, Y-550-HN, Y-600-HN and Y-650-HN.

CJGSB2_2019_v25n1_33_f0006.png 이미지

Figure 6. Pore size distribution of Y, Y-550-HN, Y-600-HN and Y-650-HN.

CJGSB2_2019_v25n1_33_f0007.png 이미지

Figure 7. Re-adsorption of benzene over Y-600-HN (conditions : 0% R.H., 250 ppm benzene, 400 mL min-1 flow, absorbent : 0.05 g).

CJGSB2_2019_v25n1_33_f0008.png 이미지

Figure 8. Desorption performance of benzene with different flow rate (conditions : 0% R.H., absorbent : 0.05 g).

Table 1. XRF analysis of Y, Y-550-HN, Y-600-HN, Y-650-HN

CJGSB2_2019_v25n1_33_t0001.png 이미지

Table 2. Surface area, pore volume and average pore size of Y, Y-550-HN, Y-600-HN, Y-650-HN

CJGSB2_2019_v25n1_33_t0002.png 이미지

Table 3. Desorption amounts of benzene with different flow rate

CJGSB2_2019_v25n1_33_t0003.png 이미지

References

  1. EEA Report No 13/2017, Air Quality in Europe ISBN 978-92-9213-920-9.
  2. Papaefthimiou, P., Ioannides, T., and Verykios, X. E., "Catalytic Incineration of Volatile Organic Compounds Present in Industrial Waste Streams," Appl. Therm. Eng., 18(11), 1005-1012 (1998). https://doi.org/10.1016/S1359-4311(98)00021-0
  3. Crawmer, J., Chen, C. H., Richard, B., Zelinsky, R., and Pearlman, H., "An Innovative Volatile Organic Compound Incinerator," 10th U. S. National Combustion Meeting, April 23-26, College Park, Maryland (2017).
  4. Huang, Y., Ho, S. S. H., Lu, Y., Niu, R., Xu, L., Cao, J., and Lee, S., "Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect," Molecules, 21(56), 1-20 (2016). https://doi.org/10.3390/molecules21010001
  5. Suarez, S., Jansson, I., Ohtani, B., and Sanchez, B., "From Titania Nanoparticles to Decahedral Anatase Particles: Photocatalytic Activity of $TiO_2$/Zeolite Hybrids for VOCs Oxidation," Catal. Today, Doi: https://doi.org/10.1016/j.cattod.2018.09.004.
  6. Fernandes, A. C., and Pires, J., "Adsorption of Volatile Organic Compounds on Zeolite L," J. Chem. Eng. Data, 61(11), 3890-3896 (2016). https://doi.org/10.1021/acs.jced.6b00624
  7. Zhange, X., Gao, B., Creamer, A. E., Cao, C., and Li, Y., "Adsorption of VOCs onto Engineered Carbon Materials: A Review," J. Hazard. Mater., 338(15), 102-123 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013
  8. Chue, K., Park, Y., and Jeon, J., "Development of Adsorption Buffer and Pressure Swing Adsorption (PSA) Unit for Gasoline Vapor Recovery," Korean J. Chem. Eng., 21(3), 676-679 (2007). https://doi.org/10.1007/BF02705504
  9. Wang, H., Yang, W., Tian, P., Zhou, J., Tang, R., and Wu, S., "A Highly Active and Anti-Coking Pd-Pt/$SiO_2$ Catalyst for Catalytic Combustion of Toluene at Low Temperature," Appl. Catat. A: Gen., 529(5), 60-67 (2017). https://doi.org/10.1016/j.apcata.2016.10.016
  10. Papaefthimiou, P., ioannides, T., and Verykios, X. E., "Catalytic Incineration of Volatile Organic Compounds Present in Industrial Waste Streams," Appl. Therm. Eng., 18(11), 1005-1012 (1998). https://doi.org/10.1016/S1359-4311(98)00021-0
  11. Yun, J. H., Choi, D. K., and Kim, S. H., "Equilibria and Dynamics for Mixed Vapors of BTX in an Activated Carbon Bed," AIChE J., 45(4), 751-760 (1999). https://doi.org/10.1002/aic.690450410
  12. Kang, S. W., Min, B. H., and Suh, S. S., "A Study on Cleaning Process for Benzene Recovery in Activated Carbon Bed," J. Korean Oil Chemists' Soc., 19, 108-116 (2002).
  13. Ritter J. A., and Yang, R. T., "Air Purification and Vapor Recovery by Pressure Swing Adsorption: A Comparison of Silicalite and Activated Carbon," Chem. Eng. Commun., 108(1), 289-305 (1991). https://doi.org/10.1080/00986449108910963
  14. Zhu, L., Tian, S., and Shi, Y., "Adsorption of Volatile Organic Compounds onto Porous Clay Heterostructures Based on Spent Organobentonites," Clays and Clay Minerals, 53(2), 123-136 (2005). https://doi.org/10.1346/CCMN.2005.0530202
  15. Dumont, E., Darracq, G., Couvert, A., Couriol, C., Amrane, A., Thomas, D., Andres, Y., and Cloirec, P. L., "VOC Absorption in a Countercurrent Packed-Bed Column Using Water/Silicone Oil Mixtures: Influence of Silicone Oil Volume Fraction," Chem. Eng. J., 168(1), 574-248 (2011).
  16. Heymes, F., Demoustier, P. M., Charbit, F., Fanlo, J. L., and Moulin, P., "Treatment of Gas Containing Hydrophobic VOCs by a Hybrid Absorption-Pervaporation Process: The Case of Toluene," Chem. Eng. Sci., 62(9), 2576-2589 (2007). https://doi.org/10.1016/j.ces.2007.02.001
  17. Heymes, F., Demoustier, P. M., Charbit, F., Fanlo, J. L., and Moulin, P., "A New Efficient Absorption Liquid to Treat Exhaust Air Loaded with Toluene," Chem. Eng. J., 115(3), 225-231 (2006). https://doi.org/10.1016/j.cej.2005.10.011
  18. https://doi.org/10.1007/s11270-013-1528-y, (Accessed Nov. 2018).
  19. Hamad, A., and Fayed, M. E., "Simulation-Aided Optimization of Volatile Organic Compounds Recovery Using Condensation," IChemE., 82(7), 895-906 (2004). https://doi.org/10.1205/0263876041596724
  20. Kim, J. Y., Jeon, D. H., Chung, B. H., and Mo, S. Y., "Dealumination of $NH_4^^+Y$-zeolite to Convert to the Hydrophobic Zeolite by High-Temperature Steam Treatment," J. KSEE., 27(4), 420-430 (2005).
  21. Severance, M. A., "Nanocrystalline Zeolite: Synthesis, Mechanism, and Applications," Ph.D. Dissertation, University of Ohio State, Columbus (2014).
  22. Barthomeuf, D., "Basic Zeolites: Characterization and uses in Adsorption and Catalysis," Catal. Rev. Sci. Eng., 38(4), 521-612 (1996). https://doi.org/10.1080/01614949608006465
  23. Weitkamp, J., Weiss, U., and Ernst, S., "New Aspects and Trends in Zeolite Catalysis," Catal. Microp, Mater., 94, 363-380 (1995).
  24. Smirniotis, P. G., Davydov, L., and Ruckenstein, E., "Composite Zeolitebased Catalysts and Sorbents," Catal. Rev. Sci. Eng., 41(1) 43-113 (1999). https://doi.org/10.1081/CR-100101949
  25. Kim, J. Y., Jeon, D. H., Kim, M. S., and Mo, S. Y., "Change of Si/Al on the Acid-dealumination of Y Type Zeolite and Water Adsorption," Paper No. D-3-2, J. KSEE., Busan (April. 2004).