• 제목/요약/키워드: optimum parameters

검색결과 2,384건 처리시간 0.028초

Optimal Design of Compact Heat Exchanger (Louver Fin-tube Heat Exchanger for High Heat Transfer and Low Pressure Drop)

  • Kang, Hie-Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권7호
    • /
    • pp.891-898
    • /
    • 2011
  • The present work was conducted to get the best geometric information for the optimum design of the complex heat exchanger. The objective function for optimal design was expressed as a combination of pressure drop and heat transfer rate. The geometric parameters for the variables of louver pitch and height, tube width, etc., were limited to ranges set by manufacturing conditions. The optimum geometric parameters were calculated by using empirical correlations and theory. The sensitivity of the parameters and optimum values are shown and discussed. The weighting factor in the objective function is important in the selection of the louver fin-tube heat exchanger.

고분자압출의 공정변수가 통기성필름강도에 미치는 영향 (Influence of Process Parameters on the Breathable Film Strength of Polymer Extrusion)

  • 최만성
    • 한국생산제조학회지
    • /
    • 제21권4호
    • /
    • pp.625-632
    • /
    • 2012
  • Optimization of process parameters in polymer extrusion is an important task to reduce manufacturing cost. To determine the optimum values of the process parameters, it is essential to find their influence on the strength of polymer breathable thin film. The significance of six important process parameters namely, extruder cylinder temperature, extruder speed, extruder dies temperature, cooling roll temperature, stretching ratio, stretching roll temperature on breathable film strength of polymer extrusion was determined. Moreover, this paper presents the application of Taguchi method and analysis of variance (ANOVA) for maximization of the breathable film strength influenced by extrusion parameters. The optimum parameter combination of extrusion process was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that extruder speed and stretching ratio were the most influential factor on the film strength, respectively. The best results of film strength were obtained at higher extruder speed and stretching ratio.

다중채널 탄성파 탐사자료의 전산처리(I) - 해양반사파 자료처리 - (Digital Processing for Multichannel Seismic Data(I) -Marine Reflection Data Processing-)

  • 김기영;홍종국;주형태
    • 지질공학
    • /
    • 제1권1호
    • /
    • pp.85-108
    • /
    • 1991
  • 해양 탄성파탐사 자료처리는 자료의 양이 많고, 처리과정이 여러 개의 전문적인 단계로 이루어져 있으며, 각 단계별로 많은 처리변수를 결정해야 하는 특성이 있다. 따라서 전체 자료를 대표할 만한 표본 자료를 대상으로 주요 처리변수를 결정하게 되고, 그 결과를 전체 자료에 적용시키는 것이 일반적이다. 본 연구에서는 국내 대륙붕 지역에 적합한 처리단계 및 단계별 최적 처리변수들을 결정하기 위하여 실제자료를 대상으로 시험처리를 실시하였다. 이 시험처리에서 구한 처리순서 및 처리변수들을 사용하여 양호한 탄성파 구조보정단면도를 작성하였다.

  • PDF

System RBDO of truss structures considering interval distribution parameters

  • Zaeimi, Mohammad;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.81-96
    • /
    • 2019
  • In this paper, a hybrid uncertain model is applied to system reliability based design optimization (RBDO) of trusses. All random variables are described by random distributions but some key distribution parameters of them which lack information are defined by variation intervals. For system RBDO of trusses, the first order reliability method, as well as monotonicity analysis and the branch and bound method, are utilized to determine the system failure probability; and Improved (${\mu}+{\lambda}$) constrained differential evolution (ICDE) is employed for the optimization process. System reliability assessment of several numerical examples and system RBDO of different truss structures are proposed to verify our results. Moreover, the effect of different classes of interval distribution parameters on the optimum weight of the structure and the reliability index are also investigated. The results indicate that the weight of the structure is increased by increasing the uncertainty level. Moreover, it is shown that for a certain random variable, the optimum weight is more increased by the translation interval parameters than the rotation ones.

실험계획법에 의한 $Cr_3C_2 - 7wt%NiCr$ 용사분말의 HVOF 용사변수 최적화 (Optimization of HVOF Spray Parameters for $Cr_3C_2 - 7wt%NiCr$ Coating Powder by Experimental Design Method)

  • 김병희;서동수
    • Journal of Welding and Joining
    • /
    • 제15권1호
    • /
    • pp.125-134
    • /
    • 1997
  • This study was conducted by L9 orthogonal array to obtain optimum spray parameters for This study was conducted by L9 orthogonal array to obtain optimum spray parameters for $Cr_3C_2 - 7wt%$(80wt%Ni-20wt%Cr) coating powder. The factors were hydrogen flow rate, oxygen flow rate, gun-to-work distance, powder feed rate. And evaluation methods for the coating were surface roughness, oxygen concentration, micro-hardness, pore size and distribution, low angle ($30^{\circ}$) erosion rate, and microstructure of coating. The optimum HVOF spray conditions were proved as follows : hydroen flow rate ; 681 SLPM, oxygen flow rate ; 215 SLPM $H^2/O^2 ratio= 3.16), gun-to-work distance ; 22cm, powder feed rate; 25g/min. The hardness (Hv300) was 1147 and the erosion rate ($30^{\circ}$degree) was $3.16\times10^{-4}$g/g. It is believed that the optimized spray conditions can be improved the wear-resistance and anti-erosion characteristics of the coating.

  • PDF

고도모사용 2 차목 초음속 디퓨져 시동특성에 영향을 미치는 파라미터에 관한 연구 (Investigation of the essential parameters governing starting characteristic in the second throat exhaust diffuser for high altitude simulation)

  • 박성현;박병훈;임지환;윤웅섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2642-2647
    • /
    • 2008
  • Starting characteristics of the axi-symmetric supersonic exhaust diffuser(SED) with a second throat are numerically investigated. Main purpose of this study is to predict theoretical starting pressure of STED using 1-D normal shock theory and to present the range of optimum starting pressure through parametric study with essential design parameters of STED influencing on starting performance. Renolds-Average Navier-Stokes equations with a standard ${\kappa}-{\varepsilon}$ turbulence model incorporated with standard wall function are solved to simulate the diffusing evolutions of the nozzle plume. Minimum(optimum) starting pressure difference of $20{\sim}25%$ between 1-D theory and experimental evidences validated from previous results[5] is also applied to predict those in this system. The analysis results indicate that dominant parameters for diffuser starting in this system is diffuser expansion ratio($A_d/A_t$), which has optimum value 120 and second throat area ratio($A_d/A_{st}$), which has optimum range $3.3{\sim}3.5$.

  • PDF

Optimal response of conical tool semi angle in ductile metal sheets indentation and its governing mechanics

  • Nazeer, Malik M.;Khan, M. Afzal;Haq, A-Ul
    • Structural Engineering and Mechanics
    • /
    • 제16권1호
    • /
    • pp.47-62
    • /
    • 2003
  • The nonlinear dependence aspect of various conical tool indentation parameters leading to an optimum tool semi angle value for easiest perforation is plotted and discussed explicitly in this work with the conclusion that tool angle has an optimum response towards most of the indentation parameters. Around this optimum angle, the aluminium sheets showed minimum fracture toughness as well as minimum work input to overcome the offered resistance. At the end, the mechanism leading to this phenomenon is presented with the conclusion that plastic flow dominates as the dimple semi cone angle reaches 35 and both pre and post plastic flow perforations lead the tool semi cone angle value towards this dimple cone semi angle of plastic flow initiation for its optimum performance. It is also concluded that specimen material failure is solely under tensile hoop stress and hence results into radial cracks initiation and propagation.

하중 계수에 기초한 최적신뢰성해석 모델 개발 (Development of Load Factors Based on Optimum Reliability Analysis Model)

  • 이증빈;신형우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.134-139
    • /
    • 1992
  • This study introduces simple derivation of optimum load factors based on both cornell's MFOSM (Mean First Order End Moment) methods and Lind - Hasofers AFOSM (Advanced First Order 2nd Moment) methods and demonstrates the relationship between the optimum reliability, the load factors, the probability distributions selected to model the load, and a measure of relative failure cost. Although some of the cost parameters cannot be evaluated accurately and the upper tail characteristics of the distributions of the random loads remain uncertainty, this optimum reliability formulation provides insight on which Parameters are most significant in selecting appropriate load criteria for structure design.

  • PDF

Multi-objective optimization of double wishbone suspension of a kinestatic vehicle model for handling and stability improvement

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.633-638
    • /
    • 2018
  • One of the important problems in the vehicle design is vehicle handling and stability. Effective parameters which should be considered in the vehicle handling and stability are roll angle, camber angle and scrub radius. In this paper, a planar vehicle model is considered that two right and left suspensions are double wishbone suspension system. For a better analysis of the suspension geometry, a kinestatic model of vehicle is considered which instantaneous kinematic and statics relations are analyzed simultaneously. In this model, suspension geometry is considered completely. In order to optimum design of double wishbones suspension system, a multi-objective genetic algorithm is applied. Three important parameters of suspension including roll angle, camber angle and scrub radius are taken into account as objective functions. Coordinates of suspension hard points are design variables of optimization which optimum values of them, corresponding to each optimum point, are obtained in the optimization process. Pareto solutions for three objective functions are derived. There are important optimum points in these Pareto solutions which each point represents an optimum status in the model. In other words, corresponding to any optimal point, a specific geometric position is determined for the suspension hard points. Each of the obtained points in the Pareto optimization can be selected for a special design purpose by designer to create an optimum condition in the vehicle handling and stability.

PSS 파라미터 최적화 및 최적위치선정에 관한 연구 (Optimizaiton of PSS Parametes and Identification of Optimum Site for PSS Applications)

  • 박영문;정정원
    • 대한전기학회논문지
    • /
    • 제40권5호
    • /
    • pp.453-459
    • /
    • 1991
  • This paper presents a new algorithm to select optimal parameters and location of power system stabilizer (PSS). A new performance measure, which evaluates the share of a particular mode among state responses, is introduced. The gradient of the performance measure with respect to PSS parametes is derived in an explicit form, so optimal parameters of PSS can be obtained by the steepest descent method. The machine, with which it is most probable to reduce the performance measure, is identified as the optimum site for PSS application.

  • PDF