• Title/Summary/Keyword: optimization scheme

Search Result 1,157, Processing Time 0.046 seconds

GA based Fuzzy Modeling using Fuzzy Equalization and Linguistic Hedge (퍼지 균등화와 언어적인 Hedge를 이용한 GA 기반 퍼지 모델링)

  • 김승석;곽근창;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.217-220
    • /
    • 2001
  • The fuzzy equalization method does not require the usual learning step for generating fuzzy rules. However it is heavily depend on the given input-output data set. So, we adapt an hierarchical scheme which sequentially optimizes the fuzzy inference system. Here, the parameters of fuzzy membership functions obtained from the fuzzy equalization are optimized by the genetic algorithm, and then they are also modified to increase the performance index using the linguistic hedge. Finally, we applied it to the Rice taste data and got better results than previous ones.

  • PDF

A New Tree Representation for Evolutionary Algorithms (진화 알고리듬을 위한 새로운 트리 표현 방법)

  • Soak, Sang-Moon;Ahn, Byung-Ha
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.1
    • /
    • pp.10-19
    • /
    • 2005
  • The minimum spanning tree (MST) problem is one of the traditional optimization problems. Unlike the MST, the degree constrained minimum spanning tree (DCMST) of a graph cannot, in general, be found using a polynomial time algorithm. So, finding the DCMST of a graph is a well-known NP-hard problem of importance in communications network design, road network design and other network-related problems. So, it seems to be natural to use evolutionary algorithms for solving DCMST. Especially, when applying an evolutionary algorithm to spanning tree problems, a representation and search operators should be considered simultaneously. This paper introduces a new tree representation scheme and a genetic operator for solving combinatorial tree problem using evolutionary algorithms. We performed empirical comparisons with other tree representations on several test instances and could confirm that the proposed method is superior to other tree representations. Even it is superior to edge set representation which is known as the best algorithm.

About fully polynomial approximability of the generalized knapsack problem

  • Hong, Sung-Pil;Park, Bum-Hwan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.11a
    • /
    • pp.93-96
    • /
    • 2003
  • The generalized knapsack problem, or gknap is the combinatorial optimization problem of optimizing a nonnegative linear functional over the integral hull of the intersection of a polynomially separable 0 - 1 polytope and a knapsack constraint. Among many potential applications, the knapsack, the restricted shortest path, and the restricted spanning tree problem are such examples. We establish some necessary and sufficient conditions for a gknap to admit a fully polynomial approximation scheme, or FPTAS, To do so, we recapture the scaling and approximate binary search techniques in the framework of gknap. This also enables us to find a condition that a gknap does not have an FP-TAS. This condition is more general than the strong NP-hardness.

  • PDF

Beamforming Optimization Using Filterbank-based Frost Algorithm (필터뱅크 기반 프로스트 알고리즘을 이용한 빔포밍 최적화)

  • Park, Ji-Hoon;Lee, Sung-Joo;Hong, Jeong-Pyo;Jeong, Sang-Bae;Hahn, Min-Soo
    • MALSORI
    • /
    • no.66
    • /
    • pp.73-86
    • /
    • 2008
  • Beamforming is one of the spatial filtering techniques which extract only desired signals from noisy environments using microphone arrays. Fixed beamforming is a simple concept and easy to implement. However, it does not show good performance in real noisy conditions. As an adaptive beamforming, Frost algorithm can be a good candidate. It uses the concept of the linearly constrained minimum variance (LCMV) algorithm. The difference between the Frost and the LCMV algorithm is the error correction scheme which is very effective feature in the aspect of performance. In this paper, as quadrature mirror filtering (QMF)-based filterbank is utilized as the pre-processing of the Frost beamformning, the filter length and the learning rate of each band is optimized to improve the performance. The performance is measured by the signal-to-noise ratio (SNR) and the Bark's scale spectral distortion (BSD).

  • PDF

Electrical and Discharge Charcteristics Analysis of Ceramic Metal Halide Lamp with Operating Method (구동방법에 따른 세라믹 메탈 할라이드 램프의 전기적 및 방전특성 분석)

  • Jang, Hyeok-Jin;Yang, Jong-Kyung;Kim, Nam-Gon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1623_1624
    • /
    • 2009
  • The use of arc tubes made of ceramic material further enhanced some of the metal halide lamp’s properties. These properties translate into higher efficacy with better color rendering, stable color through lamp long life. Recently, due to an increase in the application of the ceramic metal-halide lamp, the study for the property etc. according to Ballast's driving scheme and the study for arc tube material, optimization of gas and so on are being proceeded to improve the property of the lamp. Especially, to control ceramic metal-halide lamp, the vigorous study and practical use with respect to Electronic Ballast, which has been improved in the disadvantages of the conventional Magnetic Ballast are made. In this paper, Electrical characteristics and gas insulation destroy time are analyzed by comparing magnetic ballast with electronic ballast.

  • PDF

Performance Analysis, Real Time Simulation and Control of Medium-Scale Commercial Aircraft Turbofan Engine

  • Kong, Chang-Duk;Jayoung Ki;Chung, Suk-Chou
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.776-787
    • /
    • 2001
  • The turbofan engine performance analysis for a medium scale commercial aircraft was carried out and the LQR control scheme for performance optimization was studied. By using scaled component maps from well-known CF6 engine characteristics, the steady-state performance analysis result was compared with BR715-56 engine performance data. The transient performance analysis was performed with four fuel schedules. The linear simulation was done at the maximum take-off condition. The real time linear simulation was performed by interpolation of the system matrices, which used the least square method as the function of LPC rotational speed. By using linear system matrices of design point, the LQR controller which used control variables for the fuel flow and the LPC bleed air was designed.

  • PDF

Numerical Simulation of NIL Process Based on Continuum Hypothesis (연속체 가정을 통한 NIL 공정의 전산모사)

  • Kim, Seung-Mo;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.532-537
    • /
    • 2007
  • Nano imprint lithography(NIL) is a cost-efficient, high-throughput processing technique to transfer nano-scale patterns onto thin polymer films. Polymers used as the resist include UV cured resins as well as thermoplastics such as polymethyl-methacrylate(PMMA). In this study, an analytic investigation was performed for the NIL process of transferring nano scale patterns onto polymeric films. Process optimization calls for a thorough understanding of resist flow during the process. We carried out 2D and 3D numerical analyses of resist flow during NIL process. The simulation incorporated continuum-hypothesis and the effects of surface tension were taken into account. For a more effective prediction of free surface, fixed grid scheme with the volume of fluid (VOF) method were used. The simulation results were verified with experimental results qualitatively. And the parametric study was performed for various process conditions.

  • PDF

Optimal Force Distribution for Quadruped Walking Robots with a Failed Leg (고장 난 다리가 있는 사족 보행 로봇을 위한 최적 힘 배분)

  • Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.614-620
    • /
    • 2009
  • The force distribution in multi-legged robots is a constrained, optimization problem. The solution to the problem is the set points of the leg contact forces for a particular system task. In this paper, an efficient and general formulation of the force distribution problem is developed using linear programming. The considered walking robot is a quadruped robot with a locked-joint failure, i.e., a joint of the failed leg is locked at a known place. For overcoming the drawback of marginal stability in fault-tolerant gaits, we define safety margin on friction constraints as the objective function to be maximized. Dynamic features of locked-joint failure are represented by equality and inequality constraints of linear programming. Unlike the former study, our result can be applied to various forms of walking such as crab and turning gaits. Simulation results show the validity of the proposed scheme.

Finite element model updating of Canton Tower using regularization technique

  • Truong, Thanh Chung;Cho, Soojin;Yun, Chung Bang;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.459-470
    • /
    • 2012
  • This paper summarizes a study for the modal analysis and model updating conducted using the monitoring data obtained from the Canton Tower of 610 m tall, which was established as an international benchmark problem by the Hong Kong Polytechnic University. Modal properties of the tower were successfully identified using frequency domain decomposition and stochastic subspace identification methods. Finite element model updating using the measurement data was further performed to reduce the modal property differences between the measurements and those of the finite element model. Over-fitting during the model updating was avoided by using an optimization scheme with a regularization term.

Real-time Forecasting of Daily Stream Flows (하천 일류출량의 실시간예측)

  • 정항우;이남호;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.47-55
    • /
    • 1990
  • An adaptive algorithm was applied to forecast daily stream flows in real time using rainfall data. A three-component tank model was selected to simulate the flows and its time-variant parameters were self-calibrated with updated data using a parameter optimization scheme, golden section search method. The resulting adaptive model, APTANK, was applied to six watersheds, ranging from 0.47 to 33.62 km$^2$ size and the simulated daily streamflows were compared with the measured. The simulation results were in good agreement with the field data. APTANK is found to be applied to real-time flow simulation purposes such as a tool for irrigation water resources management and operations. The model is particularly good to simulate streamflows on dry days as compared to wet days having runoff-induced precipitation.

  • PDF