• Title/Summary/Keyword: optimization problems

Search Result 2,423, Processing Time 0.029 seconds

Structural Optimization Using Tabu Search in Discrete Design Space (타부탐색을 이용한 이산설계공간에서의 구조물의 최적설계)

  • Lee, Kwon-Hee;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.798-806
    • /
    • 2003
  • Structural optimization has been carried out in continuous or discrete design space. Methods for continuous design have been well developed though they are finding the local optima. On the contrary, the existing methods for discrete design are extremely expensive in computational cost or not robust. In this research, an algorithm using tabu search is developed fur the discrete structural designs. The tabu list and the neighbor function of the Tabu concepts are introduced to the algorithm. It defines the number of steps, the maximum number for random searches and the stop criteria. A tabu search is known as the heuristic approach while genetic algorithm and simulated annealing algorithm are attributed to the stochastic approach. It is shown that an algorithm using the tabu search with random moves has an advantage of discrete design. Furthermore, the suggested method finds the reliable optimum for the discrete design problems. The existing tabu search methods are reviewed. Subsequently, the suggested method is explained. The mathematical problems and structural design problems are investigated to show the validity of the proposed method. The results of the structural designs are compared with those from a genetic algorithm and an orthogonal array design.

A Real Code Genetic Algorithm for Optimum Design (실수형 Genetic-Algorithm에 의한 최적 설계)

  • 양영순;김기화
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.123-132
    • /
    • 1995
  • Genetic Algorithms(GA), which are based on the theory of natural evolution, have been evaluated highly for their robust performances. Traditional GA has mostly used binary code for representing design variable. The binary code GA has many difficulties to solve optimization problems with continuous design variables because of its large computer core memory size, inefficiency of its computing time, and its bad performance on local search. In this paper, a real code GA is proposed for dealing with the above problems. So, new crossover and mutation processes of GA are developed to use continuous design variables directly. The results of read code GA are compared with those of binary code GA for several single and multiple objective optimization problems. As a result of comparisons, it is found that the performance of the real code GA is better than that of the binary code GA, and concluded that the real code GA developed here can be used for the general optimization problem.

  • PDF

Co-Evolutionary Algorithm and Extended Schema Theorem

  • Sim, Kwee-Bo;Jun, Hyo-Byung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.95-110
    • /
    • 1998
  • Evolutionary Algorithms (EAs) are population-based optimization methods based on the principle of Darwinian natural selection. The representative methodology in EAs is genetic algorithm (GA) proposed by J. H. Holland, and the theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. In the meaning of these foundational concepts, simple genetic algorithm (SGA) allocate more trials to the schemata whose average fitness remains above average. Although SGA does well in many applications as an optimization method, still it does not guarantee the convergence of a global optimum in GA-hard problems and deceptive problems. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve in contrast with traditional single population evolutionary algorithm. In this paper we show why the co-evolutionary algorithm works better than SGA in terms of an extended schema theorem. And predator-prey co-evolution and symbiotic co-evolution, typical approaching methods to co-evolution, are reviewed, and dynamic fitness landscape associated with co-evolution is explained. And the experimental results show a co-evolutionary algorithm works well in optimization problems even though in deceptive functions.

  • PDF

SUBSTRUCTURING ALGORITHM FOR STRUCTURAL OPTIMIZATION USING THE FORCE METHOD

  • JANG, HO-JONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.2
    • /
    • pp.41-47
    • /
    • 1998
  • We consider some numerical solution methods for equality-constrained quadratic problems in the context of structural analysis. Sparse orthogonal schemes for linear least squares problem are adapted to handle the solution step of the force method. We also examine these schemes with substructuring concepts.

  • PDF

Hybrid Intelligent System Using PSO/Bacterial Foraging and PID Controller Tuning

  • Kim Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.22-34
    • /
    • 2006
  • o GA-BF approach for improvement of learning and optimization in GA o GA-BF has better response on various test functions o Satisfactory PID controller tuning in AVR, motor vector control systems o Potentially useful in many practically important engineering optimization problems

  • PDF

OPTIMALITY AND DUALITY FOR NONDIFFERENTIABLE FRACTIONAL PROGRAMMING WITH GENERALIZED INVEXITY

  • Kim, Gwi Soo;Kim, Moon Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.3
    • /
    • pp.465-475
    • /
    • 2016
  • We establish necessary and sufficient optimality conditions for a class of generalized nondifferentiable fractional optimization programming problems. Moreover, we prove the weak and strong duality theorems under (V, ${\rho}$)-invexity assumption.

NUMERICAL METHDS USING TRUST-REGION APPROACH FOR SOLVING NONLINEAR ILL-POSED PROBLEMS

  • Kim, Sun-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.1147-1157
    • /
    • 1996
  • Nonlinear ill-posed problems arise in many application including parameter estimation and inverse scattering. We introduce a least squares regularization method to solve nonlinear ill-posed problems with constraints robustly and efficiently. The regularization method uses Trust-Region approach to handle the constraints on variables. The Generalized Cross Validation is used to choose the regularization parameter in computational tests. Numerical results are given to exhibit faster convergence of the method over other methods.

  • PDF

Sufficient Condition for Existence of Solution Horizon in Undiscounted Nonhomogeneous Infinite Horizon Optimization Problems

  • Park, Yun-Sun;Cho, Myeon-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.1
    • /
    • pp.121-131
    • /
    • 1994
  • Since many infinite horizon problems have infinite sequence of data to be considered, in general, it is impossible to express the optimal strategies finitely or to calculate them in finite time. This paper considers undiscounted nonhomogeneous deterministic infinite horizon problems. For those problems, we take a basic step to solve this class of infinite horizon problems optimally by giving a sufficient condition for a finite solution.

  • PDF