• Title/Summary/Keyword: optimization of culture conditions

Search Result 318, Processing Time 0.036 seconds

Optimization of Culture Conditions for the Production of Pyrimidine Nucleotide N-Ribosidase from Pseudomonas oleovorans (Pseudomonas oleovorans의 pyrimidine nucleotide N-ribosidase의 생성 최적조건)

  • Yu, Tae-Shick
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.608-613
    • /
    • 2004
  • Pyrimidine nucleotide N-ribosidase (pyrimidine 5'-nucleotide phosphoribo (deoxyribo) hydrolase/pyrimidine 5'-nucleoude nucleosidase, EC 3.2.2.10) directly catalyzes pyrimidine 5'-nucleotide to pyrimidine base and ribose (deoxyribo) 5-phosphate. In order to clarify the best nutritional conditions for the growth and the pyrimidine nucleotide N-ribosidase production of Pseudomonas oleovorans ATCC 8062 the effects of various nutrients such as different carbon and nitrogen sources were studied. For the both the growth and the enzyme production, 2% fumarate, 1.5% peptone, 5% corn steep liquor (CSL) and 1% ammonium chloride were excellent carbon and nitrogen sources, respectively. Optimum pH, temperature, and cultivation time for the enzyme production were 7.0, $28^{\circ}C$, and 48 h, respectively. The pyrimidine nucleotide N-ribosidase of P. oleovorans ATCC 8062 was not induced by UMP and its derivatives, and was constitutive enzyme.

Optimization of Human Thrombopoietin Production in Insert Cells Using Baculovirus Expression System (베큘로 바이러스 발현 시스템에 의한 곤충세포에서의 인간 트롬보포이에틴 생산 최적화)

  • 고여욱;손미영;박상규;안혜경;박승국;박명환;양재명
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.181-186
    • /
    • 1998
  • In order to obtain high-level production of recombinant human thrombopoietin (rhTPO) in insect cell line, HTI-TN-5B1-4 (TN5), conditions for optimal rhTPO expression such as multiplicity of infection (MOI), the cell density at infection, harvesting time and type of culture method as well as growth media were determined. When TN5 cells were cultured as anchorage-dependent state in 60-mm dish, cell density $2\times^6$ cells,MOI of 10 and Garvesting the culture media at 72 hr post-infection wrere the cinditions for highest rh TPO production. High production of rhTPO was also achieved by using EXPRESS FIVE serum free media rather than SF900II serum free media-1. Anchorage-dependent TN5 cells were adapted as a suspension culture when they were grown in the presence of heparin. TN5 cells were successfully cultured at 0.2 L scale in suspension culture without having aggregation. When TN5 cells were cultured as suspension state, cell density of $0.6\times10^6$ cells/mL, MOI of 1 and harvesting the culture media at 72 hr post-infection, gave the highest yield of rhTPO.

  • PDF

Optimization of Cellulase Production from Paenibacillus jamilae BRC 15-1 (Paenibacillus jamilae BRC15-1의 Cellulase 생산 최적화)

  • Cha, Young-Lok;Yoon, Young-Mi;Yoon, Ha-Yan;Kim, Jung Kon;Yang, Ji-Young;Na, Han-Beur;Ahn, Jong-Woong;Moon, Youn-Ho;Choi, In-Hu;Yu, Gyeong-Dan;Lee, Ji-Eun;An, Gi Hong;Lee, Kyeong-Bo
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.283-290
    • /
    • 2015
  • In this study was selected the cellulolytic microorganism and investigated optimum condition of cellulase production for the cellulosic bioethanol production. A bacterial strain Paenibacillus jamilae BRC15-1, was isolated from soil of domestic reclaimed land. For optimizing cellulase production from the selected strain, various culture parameters were investigated such as culture medium, pH (pH 4~10), temperature ($25{\sim}50^{\circ}C$) and culture time (2~72 h). As a result, P. jamilae BRC15-1 efficiently produced cellulase from cellulosic biomass under following conditions: 24 h of culture time (pH 7, $40^{\circ}C$) in manufactured media of CMC (carboxymethyl cellulose) with peptone. Optimum saccharifying condition of crude enzyme produced from P. jamilae BRC15-1 was identified on pH 6 and $40^{\circ}C$ of reaction temperature, respectively. This crude enzyme from P. jamilae BRC15-1 was used for saccharification of pretreated sweet sorghum (Sorghum bicolor var. dulciusculum Ohwi) bagasse under the optimal condition. Finally, pretreated sweet sorghum bagasse including 0.1 g of glucan was saccharified by crude enzyme of P. jamilae BRC15-1 into 2.75 mg glucose, 0.79 mg xylose and 1.12 mg arabinose.

Optimization of Xylitol Production by Candida tropicalis in Two-stage Fed-batch Culture (Candida tropicalis의 2단계 유가식 배양에 의한 Xylitol 생산의 최적화)

  • 유연우;조영일;서진호
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.93-99
    • /
    • 2002
  • Two-stage fed-batch culture of Candide tropicalis that was designated primarily to cultivate the cell in the glucose medium (1st stage) and then produced the xylitol from xylose medium (2nd stage) was developed to improve a xylitol yield and productivity. In the growth stage, glucose was automatically supplied to the fermentor by pH-stat mode when the pH was up 5.7, When a feeding medium was added in order to reach the glucose and yeast extract concentrations up to 100 and 40 g/L, respectively, a high cell concentration and a relatively low ethanol concentration were obtained in 18.5 h culture. In the production stage, initial xylose concentration of 150 g/L was the most favorable for obtaining the final xylitol concentration and productivity. The addition of mineral salts was also enhanced a xylitol production. But the aeration rate was not significantly affected a xylitol production. When the addition of 16 g yeast extract and 232.5 g xylose powder at the production stage was used, xylitol yield and productivity were significantly increased. With these conditions, xylitol concentration, yield and productivity of 108.9 g/L, 74%) and 3.3 g/L·h, respectively, were obtained in a final volume of 1.58 L. The further addition of 16 g yeast extract and 232.5 g xylose powder increased the working volume partly (1.67 L) and resulted in a relatively high xylitol concentration, yield and productivity of 193 g/L, 70% and 3.6 g/L·h, respectively.

Optimization of γ-Aminobutyric Acid Production by Enterococcus faecium JK29 Isolated from a Traditional Fermented Foods (전통발효식품 유래 Enterococcus faecium JK29에 의한 γ-aminobutyric acid의 생산 최적화)

  • Lim, Hee Seon;Cha, In-Tae;Lee, Hyunjin;Seo, Myung-Ji
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.26-33
    • /
    • 2016
  • Dominant lactic acid bacteria (LAB) strains were isolated from traditional fermented foods to obtain rare ${\gamma}$-aminobutyric acid (GABA)-producing LAB. Out of 147 isolates, 23 strains that could produce GABA with 1% (w/v) L-monosodium glutamate (MSG) were first isolated. After further screening of these rare GABA-producing LAB by analysis of the glutamate decarboxylase and 16S rRNA gene sequences, Enterococcus faecium JK29 was isolated, and 1.56 mM of GABA was produced after 48 h cultivation in basic de Man, Rogosa, and Sharpe (MRS) medium. To enhance GABA production by E. faecium JK29, the culture conditions were optimized. When E. faecium JK29 was cultivated in optimized MRS medium containing 0.5% (w/v) sucrose and 2% (w/v) yeast extract with 0.5% (w/v) MSG, GABA production reached 14.86 mM after 48 h cultivation at initial conditions of pH 7.5 and $30^{\circ}C$.

Optimization of Fermentation Conditions for the Manufacture of Wild Grape Wine (산머루주 제조를 위한 발효조건의 최적화)

  • Kim, Seong-Ho
    • Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.24-37
    • /
    • 2008
  • Yeast with excellent ferment ability was isolated and selected from wild grape to manufacture wild grape wine. Wild grape wine by SMR-3 isolated from wild grape was better than other strains in quality, such as high alcohol content and low acidity, residual sugar, organic acid and fusel oil content. Fermentation condition was optimized to manufacture wild grape wine with response surface methodology using isolated SMR-3 as an alcohol fermentation strain. As a result of culture conditions, 10.61% of alcohol content was expected under the conditions of $21.91^{\circ}C$ fermenting temperature, $21.48^{\circ}brix$ of initial sugar content, and 14.65 day of fermentation time. Residual sugar content showed the lowest value at $24.48^{\circ}C$ fermentation temperature, $12.78^{\circ}brix$ of initial sugar content, and 9.02 day fermentation time. The highest level of sensory evaluation was found at $20.23^{\circ}C$ fermentation temperature, $25.30^{\circ}brix$ of initial sugar content, and 5.94 day fermentation time. Ethyl alcohol was the main alcohol component in wild grape wine and fusel oil in wild grape wine was hardly detected; thus, the quality of wild grape wine was considered excellent. The optimal fermentation conditions of wild grape wine was superimposed by deriving a regression equation for alcohol content, fusel oil, ethyl alcohol content, and overall palatability for each variable of wild grape wine. Hence, the optimal fermentation conditions are estimated to be: fermentation temperature $24{\sim}28^{\circ}C$, initial sugar content $20{\sim}24^{\circ}brix$, and fermenting time $12{\sim}14$ days.

Establishment of Miniaturized Cultivation Method for Large and Rapid Screening of High-yielding Monascus Mutants, and Enhanced Production of Monacolin-K through Statistical Optimization of Production Medium (Monascus 균사체의 소규모 배양을 통한 고생산성 균주의 대규모 선별방법 확립과 통계적 생산배지 최적화를 통한 Monacolin-K 생산성 향상)

  • Lee, Mi-Jin;Jeong, Yong-Seob;Kim, Pyeung-Hyeun;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.305-312
    • /
    • 2007
  • It is crucial to develop a miniaturized cultivation method for large and rapid screening of high-yielding mutants of monacolin-K, a powerful anti-hypercholesterolemic secondary metabolite biosynthesized by the fungal cells of Monascus ruber. In order to investigate as many strains as possible in a short time, a miniaturized fermentation method especially suitable for the cultivation of the filamentous Monascus mutants was developed using $50m{\ell}$ culture-tube ($7m{\ell}$ of working volume) instead of the traditional $250m{\ell}$ flask ($50m{\ell}$ of working volume). Generally, in filamentous fungal cell fermentations, morphologies in growth and production cultures should be maintained as thick filamentous and compact-pelleted (usually less than 1 mm in diameter) forms, respectively, for enhanced production of secondary metabolites in final production cultures. In this study, we intended to induce the respective optimal morphologies in the miniaturized culture system for the purpose of rapid screening of overproducers. Miniaturized growth culture system was successfully developed due to the mass production of spores in the statistically optimized solid medium. When large amounts of spores were inoculated into the growth cultures, and brown rice flour (20 g/L) was also supplemented to the growth medium, dense filamentous morphologies were successfully induced in the growth cultures performed with the 50 ml culture tubes. It was implied that the amounts of spores inoculated into the growth tube-cultures and the growth medium components should be the key factors for the induction of the filamentous forms in the growth fermentations. Furthermore, in order to statistically optimize production medium, multiple experiments based on Plackett-Burman design and response surface method (RSM) were carried out, resulting in more than 2 fold enhanced production of monacolin-K in the final production cultures with the optimized production medium. Notably, under the production culture conditions with the statistically optimized medium, optimal pellet sizes below 1 mm in diameter were reproducibly induced, in contrast to the thick and viscous filamentous morphologies observed in the previous production cultures.

Optimization of Fermentation Conditions for CoQ10 Production Using Selected Bacterial Strains (CoQ10 생성 세균의 선별 및 발효조건 최적화)

  • Jeong, Keun-Il;Kang, Won-Hwa;Lee, Jung-Ah;Shin, Dong-Ha;Bae, Kyung-Sook;Park, Ho-Young;Park, Hee-Moon
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.46-51
    • /
    • 2010
  • Coenzyme Q10 (CoQ10) is an essential lipid-soluble component of membrane-bound electron transport chains. CoQ10 is involved in several aspects of cellular metabolism and is increasingly being used in therapeutic applications for several diseases. Despite the recent accomplishments in metabolic engineering of Escherichia coli for CoQ10 production, the production levels are not yet competitive with those by fermentation or isolation. So we tested several microorganisms obtained from the KCTC of Biological Resource Center to find novel sources of strain-development for CoQ10-production. Then we selected two strains, Paracoccus denitrificans (KCTC 2530) and Asaia siamensis (KCTC 12914), and tested to optimize the CoQ10 production conditions. Among the carbon sources tested, CoQ10 production was the highest when fructose was supplied about 4% concentration. Yeast extract produced the highest CoQ10 production about 2% concentration. The highest CoQ10 production was obtained at pH 6.0 for P. denitrificans and pH 8.0 for A. siamensis. And two strains showed the highest CoQ10 production at $30^{\circ}C$, but the highest DCW was obtained at $37^{\circ}C$. In the fed-batch culture, P. denitrificans yielded $14.34{\pm}0.473$ mg and A. siamensis yielded $12.53{\pm}0.231$ mg of final CoQ10 production.

Optimization of Culture Conditions for the Production of Antibacterial Activities by Paenibacillus polymyxa DY1 Isolated from Soil (토양에서 분리한 Paenibacillus polymyxa DY1의 항균활성물질 생산을 위한 배양조건 최적화)

  • Shin, Eun-Seok;Kwon, Sun-Il;Yoo, Kwan-Hee
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.4
    • /
    • pp.342-348
    • /
    • 2007
  • In a previous study, a new antibacterial activity was found from Paenibacillus polymyxa DY1 isolated from Korean soil, which showed a good growth inhibition against various multidrug resistant enteric bacteria. Thus the effect of nutritional factors and physicochemical conditions on the growth of P. polymyxa DY1 cells and the production of antibacterial activity were evaluated in this study. For the growth of P. polymyxa DY1 cells the optimum condition reaches by incubating at $35^{\circ}C$ for 48 hours by shaking at 180 rpm in the basal medium containing 0.6% dextrose, 1.4% ammonium phosphate dibasic, 0.9% peptone, 2.4% glutamine, and 2 mM sodium molybdate with initial pH 8.0. A maximum level of antibacterial activity was obtained when P. polymyxa DY1 was incubated at $35^{\circ}C$ for 48 hours by shaking at 180 rpm in the basal medium with initial pH 8.0 containing 1% dextrose, 1.5% ammonium sulfate, 1.1% casamino acid, 1.9% aspartic acid, and 2 mM ferrous sulfate.

Optimization of Bioflocculant Production Conditions for Organic Wastewater Treatment with Aeromonas hydrophila KH-54 (Aeromonas hydrophila KH-54가 분비하는 유기폐수처리용 생물응집제 생산조건의 최적화)

  • Seo, Ho-Chan;Lee, Jung-Suk;Yun, Zu-Whan;Yi, Yun-Seok;Cho, Hong-Yon
    • Applied Biological Chemistry
    • /
    • v.41 no.6
    • /
    • pp.465-470
    • /
    • 1998
  • For the need of bio-degradable flocculant in stage of wastewater treatment, some cultural conditions of bioflocculant production were optimized with Aeromonas hydrophila KH-54. About 260 strains of type culture and bacteria isolated from marsh, pond, activated sludge, etc were examined for their ability to flocculate kaolin particles and swine wastewater. Among them, KH-54 showed the highest flocculating activity and was identified as Aeromonas hydrophila according to the cultural, morphological and physiological properties. The maximum production of the flocculant secreted by Aeromonas hydrophila KH-54 was observed in culture medium containing 2.0% mannitol, 0.05% ammonium chloride, 0.02% potassium phosphate dibasic, 0.01% $MgSO_4{\cdot}7H_2O$ and 0.05% yeast extract at initial pH 7.0 when cultured on rotary shaker controlled at $25^{\circ}C$ and 150 rpm. Under the optimized condition, the flocculating ability reached to 770 units/ml of kaolin flocculating activity and 81% of NTU removal efficiency against swine wastewater after 4 days cultivation. The bioflocculant was also effective on various organic wastewaters other than swine wastewater, showing NTU removal rate ranging from 92% to 34%.

  • PDF