Optimization of Culture Conditions for the Production of Antibacterial Activities by Paenibacillus polymyxa DY1 Isolated from Soil

토양에서 분리한 Paenibacillus polymyxa DY1의 항균활성물질 생산을 위한 배양조건 최적화

  • Shin, Eun-Seok (Department of Internal Medicine, School of Medicine, University of Ulsan) ;
  • Kwon, Sun-Il (Department of Clinical Pathology, Daegu Health College) ;
  • Yoo, Kwan-Hee (Department of Biology, Sangji University)
  • 신은석 (울산대학교 의과대학 내과학교실) ;
  • 권순일 (대구보건대학 임상병리과) ;
  • 유관희 (상지대학교 생명과학과)
  • Published : 2007.11.30

Abstract

In a previous study, a new antibacterial activity was found from Paenibacillus polymyxa DY1 isolated from Korean soil, which showed a good growth inhibition against various multidrug resistant enteric bacteria. Thus the effect of nutritional factors and physicochemical conditions on the growth of P. polymyxa DY1 cells and the production of antibacterial activity were evaluated in this study. For the growth of P. polymyxa DY1 cells the optimum condition reaches by incubating at $35^{\circ}C$ for 48 hours by shaking at 180 rpm in the basal medium containing 0.6% dextrose, 1.4% ammonium phosphate dibasic, 0.9% peptone, 2.4% glutamine, and 2 mM sodium molybdate with initial pH 8.0. A maximum level of antibacterial activity was obtained when P. polymyxa DY1 was incubated at $35^{\circ}C$ for 48 hours by shaking at 180 rpm in the basal medium with initial pH 8.0 containing 1% dextrose, 1.5% ammonium sulfate, 1.1% casamino acid, 1.9% aspartic acid, and 2 mM ferrous sulfate.

새로운 항균물질의 탐색이 활발하다. 선행연구에서 새로운 항균활성물질을 생산하는 세균이 한국토양에서 분리되어 Paenibacillus polymyxa DY1으로 동정 및 명명되었으며, 다제내성 장내세균들에 대한 항균활성 특성이 규명되어 새로운 항생물질로서 잠재력을 보여주었다. 본 연구에서 배지의 탄소원, 무기질소원, 유기질소원, 아미노산, 무기염류 등의 영양 조성물과 물리화학적 생장조건이 P. polymyxa DY1 균체의 생장과 항균활성 생산에 미치는 영향을 조사하였다. 균체의 생장을 위하여 기초배지에 0.6% dextrose, 1.4% ammonium phosphate monobasic, 0.9% peptone, 2.4% glutamine, 2 mM sodium molibdate를 가한 후 pH를 8.0으로 조정하고 $35^{\circ}C$에서 30$\sim$48시간동안 180 rpm으로 진탕배양하는 것이 가장 적합하였다. P. polymyxa DY1 항균활성의 생산은 기초배지에 1% dextrose, 1.5% ammonium sulfate, 1.1% casamino acid, 1.9% aspartic acid, 2 mM ferrous sulfate를 가한 배지를 pH 8.0으로 조정하고 $35^{\circ}C$에서 30$\sim$48시간동안 180 rpm으로 진탕배양하는 조건에서 가장 높았다.

Keywords

References

  1. Gyeong JH and SD Kim. 2003. Purification and characteriztion of an antifungal antibiotic from Bacillus megaterium KL 39, a biocontrol agent of Red-Pepper Phytophtora blight disease. Korean J. Appl. Microbiol. Biotechnol. 31:235-241
  2. Han KH and SD Kim. 1999. Production of cathepsin B inhibitor by Streptomyces luteogriseus KT-10. Korean J. Appl. Microbiol. Biotechnol. 27:458-465
  3. He Z, D Kisla, L Zhang, C Yuan, KB Green-Church and AE Yousef. 2007. Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl. Environ. Microbiol. 73:168-78 https://doi.org/10.1128/AEM.02023-06
  4. Hong SH, JH Ryu, YB Park and JH Ha. 1990. The optimum culture conditions for the production of antibiotics KG-1167A & KG-1167B produced by Clostridium sp. Korean J. Appl. Microbiol. Biotechnol. 18:286-291
  5. Hong SH, MJ Kim, YB Park, JK Lee and JH Ha. 1993. Identification of the antibiotic-producing Clostridium sp. KH-431 and purification of the antibiotics Korean J. Appl. Microbiol. Biotechnol. 21:41-46
  6. Kim HR. 1994. Antifungal antibiotic of antiagonistic bacterium Bacillus sp. YH-16 against Fusarium solani causing plant root rot. Department of Applied Microbiology, Graduate School, Youngnam University
  7. Kim DS, CY Bae, JJ Jeon, SJ Chun, HW Oh, SG Hong, KS Baek, EY Moon and KS Bae. 2004. Paenibacillus elgii sp. nov., with broad antimicrobial activity. Int. J. Syst. Evol. Microbiol. 54:2031-2035 https://doi.org/10.1099/ijs.0.02414-0
  8. Kim KR, TM Yoon, HJ Kwon and JW Seo. 2006. Trends in development of new antibiotics and antifungal agents. Microorg. Indus. 32:16-20
  9. Kunin CM. 1993. Resistance to antimicrobial drugs-a worldwide calamity. Ann. Intern. Med. 118:557-561 https://doi.org/10.7326/0003-4819-118-7-199304010-00011
  10. Lim TH, JM Lee, TH Chang and BJ Cha. 2000. Antifungal activity and identification of an Actinomycetes strain isolated from mummified peaches. Korean J. Appl. Microbiol. Biotechnol. 28:161-166
  11. Park SO, SK Song, KS Yoon, YH Jeong, SJ Lee, YS Jeong and GT Chun. 2000. Enhanced production of antifungal substance (PAFS) biosynthesized by Pseudomonas aeruginosa and examination of its physiological characteristics in fermentation. Korean J. Appl. Microbiol. Biotechnol. 28:341-348
  12. Selim S, J Negrel, C Govaerts, S Gianinazzi and D van Tuinen. 2005. Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 isolated from the sorghum mycorrhizosphere. Appl. Environ. Microbiol. 71:6501-6507 https://doi.org/10.1128/AEM.71.11.6501-6507.2005
  13. Shin ES, HM Lee, BK Lee, SH Kim, SI Kwon and KH Yoo. 2007a. Identification and characterization of Paenibacillus polymyxa DY1 isolated from Korean soil with new antibacterial activity. Korean J. Microbiol. 43:47-53
  14. Shin ES, SI Kwon and KH Yoo. 2007b. Growth inhibition profile of an antibacterial entity from Paenibacillus DY1 isolated from Korean soil against multidrug resistant enteric bacterial strains and its characterization. J. Exp. Biomed. Sci. 13:47-53
  15. Shin YJ. 2000. Isolation, characteristics and structural analysis of antifungal antibiotic from Bacillus sp. YJ-63. Department of Microbiology, Graduate School, Dongeui University
  16. Svetoch EA, NJ Stern, BV Eruslanov, YN Kovalev, LI Volodina, VV Perelygin, EV Mitsevich, IP Mitsevich, VD Pokhilenko, VN Borzenkov, VP Levchuk, OE Svetoch and TY Kudriavtseva. 2005. Isolation of Bacillus circulans and Paenibacillus polymyxa strains inhibitory to Campylobacter jejuni and characterization of associated bacteriocins. J. Food Prot. 68:11-17 https://doi.org/10.4315/0362-028X-68.1.11