DOI QR코드

DOI QR Code

Optimization of Cellulase Production from Paenibacillus jamilae BRC 15-1

Paenibacillus jamilae BRC15-1의 Cellulase 생산 최적화

  • 차영록 (농촌진흥청 국립식량과학원) ;
  • 윤영미 (농촌진흥청 국립식량과학원) ;
  • 윤하얀 (농촌진흥청 국립식량과학원) ;
  • 김중곤 (농촌진흥청 국립축산과학원) ;
  • 양지영 (농촌진흥청 국립식량과학원) ;
  • 나한별 (농촌진흥청 국립식량과학원) ;
  • 안종웅 (농촌진흥청 국립식량과학원) ;
  • 문윤호 (농촌진흥청 국립식량과학원) ;
  • 최인후 (농촌진흥청 국립식량과학원) ;
  • 유경단 (농촌진흥청 국립식량과학원) ;
  • 이지은 (농촌진흥청 국립식량과학원) ;
  • 안기홍 (농촌진흥청 국립식량과학원) ;
  • 이경보 (농촌진흥청 국립식량과학원)
  • Received : 2015.10.15
  • Accepted : 2015.12.07
  • Published : 2015.12.27

Abstract

In this study was selected the cellulolytic microorganism and investigated optimum condition of cellulase production for the cellulosic bioethanol production. A bacterial strain Paenibacillus jamilae BRC15-1, was isolated from soil of domestic reclaimed land. For optimizing cellulase production from the selected strain, various culture parameters were investigated such as culture medium, pH (pH 4~10), temperature ($25{\sim}50^{\circ}C$) and culture time (2~72 h). As a result, P. jamilae BRC15-1 efficiently produced cellulase from cellulosic biomass under following conditions: 24 h of culture time (pH 7, $40^{\circ}C$) in manufactured media of CMC (carboxymethyl cellulose) with peptone. Optimum saccharifying condition of crude enzyme produced from P. jamilae BRC15-1 was identified on pH 6 and $40^{\circ}C$ of reaction temperature, respectively. This crude enzyme from P. jamilae BRC15-1 was used for saccharification of pretreated sweet sorghum (Sorghum bicolor var. dulciusculum Ohwi) bagasse under the optimal condition. Finally, pretreated sweet sorghum bagasse including 0.1 g of glucan was saccharified by crude enzyme of P. jamilae BRC15-1 into 2.75 mg glucose, 0.79 mg xylose and 1.12 mg arabinose.

Keywords

References

  1. Kim, J. W. (2014) Effects of fermentation parameters on cellulolytic enzyme production under solid substrate fermentation. Korean Chem. Enh. Res. 52: 302-306. https://doi.org/10.9713/kcer.2014.52.3.302
  2. Ministry of Trade, Industry and Energy (2015) Korea Biotechnology Industry Organization Based on 2013 National bio-industry survey report, Seoul, Korea.
  3. Sarkar, N., S. K. Ghosh, S. Bannerjee, and K. Aikat (2012) Bioethanol production from agricultural wastes. Renew. Energ. 37: 19-27. https://doi.org/10.1016/j.renene.2011.06.045
  4. Dhillon, G. S., S. K. Brar, S. Kaur, and M. Verma (2013) Bioproduction and extraction optimization of citric acid from Aspergillus niger by rotating drum type solid-state bioreactor. Ond. Cropprod. 41: 78-84.
  5. Reese, E. T., R. G. Siu, and H. S. Levinson (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol. 59: 485.
  6. Steffan, R., A. Breen, R. Atlas, and G. Sayler (2011) Application of gene probe methods for monitoring specific microbial populations in freshwater ecosystems. Can. J. Microbiol. 35: 681-685.
  7. Jung, S. R. (2015) Efficient enzymatic bioconversion of cellulosic biomass and development of plant enzyme farming system with autohydrolysis. Ph.D. Thesis. Chonnam National University, Gwangju, Korea.
  8. Harris, P. V., D. Welner, K. C. McFarland, E. Re, J. N. Poulsen, K. Brown, R. Salbo, H. Ding, E. Vlasenko, S. Merino, F. Xu, J. Cherry, S. Larsen, and L. L. Leggio (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry. 49: 3305-3316. https://doi.org/10.1021/bi100009p
  9. Giddings, G. (2001) Transgenic plants as protein factories. Curr. Opin. Biotech. 12: 450-454. https://doi.org/10.1016/S0958-1669(00)00244-5
  10. Bogorad, L. (2000) Engineering chloroplasts: an alternative site for foreign genes, proteins, reactions and products. Trends Biothchnol. 18: 257-263. https://doi.org/10.1016/S0167-7799(00)01444-X
  11. Dinant, S., C. Ripoll, M. Pieper, and C. Cavid (2004) Phloem specific expression driven by wheat dwarf geminivirus V-sense promoter in transgenic dicotyledonous species. Physiol Plant. 121: 108-116. https://doi.org/10.1111/j.0031-9317.2004.00296.x
  12. Yakoby, N., A. Garvey, and I. Raskin (2006) Tobacco ribosomal DNA spacer element elevates Bowman-Birk inhibitor expression in tomato plants. Plant cell Reports. 25: 573-581. https://doi.org/10.1007/s00299-005-0101-6
  13. Lee, J. S. (2013) Isolation and characterization of cellulase-producing Bacillus licheniformis STB1. M.S. Thesis. Dankook University, Yongin-si, Gyeonggi-do, Korea.
  14. Jung, Y. H., J. H. Hong, K. S. Youn, H. K. No, S. H. Lee, and C. S. Park (2013) Screening of microorganism producing cellulase from Doenjang, a Korean traditional fermented food and characterization of cellulase from cellulolytic microorganism. Department of Food Science and Tech. 712-702.
  15. Jang, Y. R. (2013) Development of multiple-stress resistant yeast strains for lignocellulosic bioethanol production. Ph.D. Thesis. University of Suwon, Hwaseong-si, Gyeonggi-do, Korea.
  16. Kim I. H., J. S. Park, J. D. Hancock, R. H. Hines, C. Cobb, H. Cao, J. W. Hong and O. S. Kwon (2003) Effects of amylase and cellulase supplementation in sorghum-based diets for finishing pigs. J. Anim. Sci. 16: 70-76.
  17. Mosolova, T. P., S. Y. Kaliuzhny and G. A. Velikodvorskaia (1993) Purification and some properties of Clostridium thermocellum endoglucanase, formed by a recombinant Escherichia coli strain. Biokhimiia. 58: 1213-1220.
  18. Ghose T. K. (1987) Measurement of cellulase activities. Pure Appl Chem. 59: 257-268. https://doi.org/10.1351/pac198759020257
  19. Seling, M., N. Weiss and Y. Ji (2008) Enzymatic saccharification of lignocellulosic biomass in the LAP(laboratory analytical procedure) technical report NREL. Golden, Colorado, US.
  20. Margarita, A., M. S. Mercedes, S. Antonio, G. Victor, L. Catherine, B. Antonio, and R. C. Alberto (2001) Paenibacillus jamilae sp. nov., an exopolysaccharide-producing bacterium able to grow in olive-mill wastewater. International Journal of Systenatic and Evolutionary Microbiology. 51: 1687-1692. https://doi.org/10.1099/00207713-51-5-1687
  21. Shida, O., H. Takagi, K. Kadowaki, L. K. Nakamura, and K. Komagata (1997) Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol 47: 289-298. https://doi.org/10.1099/00207713-47-2-289
  22. Kim, H. J., Y. H. Kim, M. J. Cho, K. Shin, D. H. Lee, T. J. Kim, and Y. S. Kim (2010) Characterization of cellulases from Schizophyllum commune for hydrolysis of cellulosic biomass. Wood Sci Technol. 38: 547-560.