• Title/Summary/Keyword: optimization of culture condition

Search Result 148, Processing Time 0.032 seconds

Optimization of gibberellin production by Fusarium prolifertum KGL0401 and its involvement in waito-c rice growth (Fusarium prolifertum KGL0401의 지베렐린 생산 최적조건과 waito-c 생장에 미치는 영향)

  • Rim, Soon-Ok;Lee, Jin-Hyung;Lee, In-Jung;Rhee, In-Koo;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.120-124
    • /
    • 2007
  • Fusarium proliferatum KGL0401 was previously isolated from Physalis alkekengi var. francheti plant roots and exhibited higher GA productivity than wild type Gibberella fujikuroi. The :tim of this work was to find out an optimal culture condition for GA production. Various carbon(fructose, glucose, lactose, maltose, sucrose) and nitrogen($KNO_3$, urea, glycine, $NaNO_3,\;NH_4Cl$) sources were used for this study. GAs activities were analysed by gas chromatography and mass spectrometry(GC-MS). The highest yield of $GA_3$ was found in the growth medium supplemented with sucrose as carbon source and $NH_4Cl$ as nitrogen source. The optimum carbon-nitrogen concentration for $GA_3$ production was found to be 0.5 M:0.17 M. Supernatant was prepared from the culture fluid of F. proliferatum KGL0401 cultured for 7 days at 3 0'E and the 10 ul supernatant was treated with 2 leaf-rice seedling.

Optimization of In vitro Cultures for Production of Seedling and Rootstock of Rehmannia glutinosa(Gaertn.) DC. (지황 배양묘 및 종근 생산을 위한 기원검증 및 최적기내배양조건 확립)

  • Kang, Young Min;Lee, Ka Youn;Kim, Mi Sun;Choi, Ji Eun;Moon, Byeong Cheol
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.81-93
    • /
    • 2016
  • Rehmannia glutinosa(Gaertn.) DC. is a herbaceous perennial plant and belonging to the Scrophulariaceae and used as roots for medicinal part and purpose. R. glutinosa is and usually used for fresh rehmannia root or prepared rehmannia root. However, it is very difficult to propagate using the seeds because of lack germination so it is propagated using the vegetative method as the rootstock. Currently, propagation and harvesting using the rootstock of R. glutinosa has difficulties about production of the high quality and quantity in R. glutinosa because of root rot disease. To optimize in vitro cultures and to improve the rootstock and seedling of R. glutinosa after morphological and genetical determination, 5 plant culture media (MS, DJ, LS, QL, and WPM) were used in this study then WPM was selected for better growth, for multiplication condition(WPM + IAA 1.0 mg/L + IBA 0.5 mg/L), and for root enlargement condition(WPM + NAA 0.1 mg/L) of R. glutinosa. Based on these results, in vitro seedlings of R. glutinosa were transferred to soil for acclimation with environment adaptation and shown the positive effects about root enlargement and root formation. Therefore, it can be used for high quality of R. glutinosa production and production of the rootstock based on propagation using in vitro seedlings of R. glutinosa.

Study on the Nicotine-Degrading Bacteria(2) -The Optimal Growth Condition of Nicotinophiles- (니코틴 분해 세균에 관한 연구(2) -니코틴 분해 세균의 최적 생장조건 연구-)

  • 강은희
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.2 no.2
    • /
    • pp.20-37
    • /
    • 1980
  • Among the 34 strains of Nicotinophiles selected in the previous experiments, strain NCT27 identified with Pseudomonas putida and strain NCT30 identified with Arthrobacter oxydans biotype nan thus were Investigated for optimization of growth conditions for nicotine degradation and other cultural characteristics. The compositions of optimized medium were to be following: $KH_2PO_4$ 2.Ogr, KCI 5.Ogr, $MgSO_4$.$7H_2O$ 20mg, $MnSO_4$.$6H_2O$ 0.2mg, $FeSO_4$.$7H_2O$ 1.Omg, Col$^{++}$ (Cobalt Acetate),2.O$\gamma$, N1$^{++}$ (NiSO4,6H2O) 0.5$\gamma$, and yeast extract 80mg per liter. The optimum initial concentrations of nicotine for growth were 0.4% for Pseudomonas and 0.1% for Arthrobacter, respectively. The optimum temperature and pH were 3$0^{\circ}C$ and 7.0 for both of strains. The pH of culture medium of Pseudomonas was changed from acidic condition to basic one in going from the logarithmic growth phase to the stationary growth phase. In contrast with Pseudomonas, it remained constant in case of Arthrobacter. The growth of Arthrobacter was completely inhibited in the nicotine concentration of 0.7&. However, Pseudomonas could grow even in the nicotine concentration of 1.0%. Moreover, it could grow successfully in the tobacco extract media as well as media containing carbon and nitrogen sources other than nicotine. The maximum rates of nicotine degradation were to be 1.22 gr./hr./liter for Pseudomonas and 0.186 gr./hr./liter for Arthrobacter, respectively.

  • PDF

Selection of Microalgae for Advanced Treatment of Swine Wastewater and Optimization of Treatment Condition. (축산폐수의 3차 처리를 위한 미세조류의 선별 및 처리조건의 최적화)

  • 김성빈;이석준;김치경;권기석;윤병대;오희목
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.1
    • /
    • pp.76-82
    • /
    • 1998
  • The feasibility of algae as means of removing nitrogen and phosphorus from secondary treated swine wastewater was studied. Among the tested 7 species of Chlorella vulgaris (UTEX 265), Chlorella sp. GE 21, Botryococcus braunii (UTEX 572), Botryococcus sp. GE 24, Scenedesmus quadricauda, Phormidium sp. GE 2, and Spirulina maxima (UTEX 2342), C. vulgaris was selected for its fast growth and abilities to remove nitrogen and phosphorus and to produce algal biomass from swine wastewater. C. vulgaris grew well at 35$^{\circ}C$, and the optimum initial pH for growth was 8.0. In the effect of light intensity, the growth of C. vulgaris was limited under a light intensity of less than 40 ${\mu}$E/$m^2$/s. The secondary treated swine wastewater contained 58.7 mg/l of total nitrogen and 14.7 mg/l of total phosphorus, and was diluted to 75, 50, and 25% with groundwater to be treated. Nitrogen and phosphorus were removed by C. vulgaris in all diluted swine wastewaters among which the most effective removal was in 75% swine wastewater (swine wastewater:groundwater=3:1). There was a tendency of linear increase in nitrogen and phosphorus removal time with increasing concentration of swine wastewater. Under the optimized culture condition, total nitrogen and total phosphorus were effectively removed to 95.3% and 96.0%, respectively, in 25% swine wastewater after 4-day incubation.

  • PDF

Optimization of Production Medium by Response Surface Method and Development of Fermentation Condition for Monascus pilosus Culture (Monascus pilosus 배양을 위한 반응표면분석법에 의한 생산배지 최적화 및 발효조건 확립)

  • Yoon, Sang-Jin;Shin, Woo-Shik;Chun, Gie-Taek;Jeong, Yong-Seob
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.288-296
    • /
    • 2007
  • Monascus pilosus (KCCM 60160) in submerged culture was optimized based on culture medium and fermentation conditions. Monacolin-K (Iovastatin), one of the cholesterol lowing-agent which was produced by Monascus pilosus may maintain a healthy lipid level by inhibiting the biosynthesis of cholesterol. Plackett-Burman design and response surface method were employed to study the culture medium for the desirable monacolin-K production. As a result of experimental designs, optimized production medium components and concentrations (g/L) were determined on soluble starch 96, malt extract 44.5, beef extract 30.23, yeast extract 15, $(NH_4)_2SO_4$ 4.03, $Na_2HPO_4{\cdot}12H_2O$ 0.5, L-Histidine 3.0, $KHSO_4$ 1.0, respectively. Monacolin-K production was improved about 3 times in comparison with shake flask fermentation of the basic production medium. The effect of agitation speed (300, 350, 400 and 450 rpm) on the monacolin-K production were also observed in a batch fermenter. Maximum monacolin-K production with the basic production medium was 68 mg/L when agitation speed was 500 rpm. And it was found that all spherical pellets (average diameter of $1.0{\sim}1.5mm$) were dominant during fermentation. Based on the results, the maximum production of 185 mg/L of monacolin-K with the optimized production medium was obtained at pH (controlled) 6.5, agitation rate 400 rpm, aeration rate 1 vvm, and inoculum size 3%.

Characterization of Protease Produced by Elizabethkingia meningoseptica CS2-1 and Optimization of Cultural Conditions for Amino Acid Production (닭 우모 분해세균 Elizabethkingia meningoseptica CS2-1이 생산하는 단백질분해효소의 특성 및 아미노산 생산을 위한 배양조건)

  • Kim, Se-Jong;Cho, Chun-Hwi;Whang, Kyung-Sook
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.2
    • /
    • pp.135-142
    • /
    • 2011
  • A feather-degrading bacterium Elizabethkingia meningoseptica CS2-1 was isolated from compost in a chicken farm. Cultured on a basal medium containing 2% chicken feather, the bacterium showed 729.7 ${\mu}mol/mL$ of amino acid. Optimal culture conditions for feather degradation by E. meningoseptica CS2-1 were $25^{\circ}C$, pH 7.5, and 180 rpm. The optimal pH and temperature for protease activity were 8.0 and $40^{\circ}C$, respectively. The composition of an optimal medium for amino acid production was 0.05% NH4Cl, 0.05% NaCl, 0.03% $K_2HPO_4$, 0.03% $KH_2PO_4$, 0.01% $MgCl_2{\cdot}6H_2O$, 0.1% urea, and 2% chicken feather. Characteristics of amino acids extracted from the optimal medium under the optimal culture conditions of E. meningoseptica CS2-1 were analyzed. The total amino acid content of strain CS2-1 was 1063 ${\mu}mol/mL$, which was 46% higher compared to the basal condition (729.7 ${\mu}mol/mL$). The essential amino acid content in the total amino acid was 315.9 ${\mu}mol/mL$, which was 44% higher than that of the basal condition. Major amino acids were proline (14%), aspartic acid (12%), glutamic acid (11%), serine (10%), alanine (10%), glycine (9%), and tyrosine (7%) by strain CS2-1. These results suggest that strain CS2-1 can be used as a potential microbial resource for the production of amino acid using chicken feathers.

Isolation of Photosynthetic Bacterium, Rhodopseudomonas palustris JK-1 and Researches on IAA and Carotenoid Production (광합성세균 Rhodopseudomonas palustis 분리 및 IAA와 Carotenoid 생성에 관한 연구)

  • Kim, Yu-Kyoung;Cho, Young-Yun;Kang, Ho-Jun;Kim, Jung-Sun;Yang, Sung-Nyun;Jwa, Chang-sook
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.4
    • /
    • pp.843-859
    • /
    • 2017
  • The JK-1 isolate which was the best producer of indole-3-acetic acid and carotenoid among the 388 strains isolated from 28 wetlands in Jeju, was identified to be Rhodopseudomonas palustirs belongs to a typical group of non sulfur purple bacteria based on 16S sRNA sequencing. This study investigated the effect of different cultural conditions of pH, temperature, agitation, light and aeration on growth, IAA and carotenoid production of photosynthetic bacterium JK-1 for optimization of IAA and carotenoid production. It was found that growth, IAA, carotenoid, and bacteriochlorophyll production with light (3,000~3,500 Lux) and agitation (100 rpm) showed better results than those with dark/static or dark/agitation (100 rpm) in anaerobic conditions. The optimal pH, temperature and agitation speed for cell growth were 7, $30^{\circ}C$, 150 rpm, for IAA production were 9, $30^{\circ}C$, 150rpm and for carotenoid production were 6, $25^{\circ}C$, 50 rpm, cultured for 72 h under anaerobic light, respectively. The growth and IAA production were high in aerobic culture compared with anaerocic culture, whereas carotenoid and bacteriochlorophyll content were decreased extremely in aerobic condition (0.5~1 vvm). Subsequently, the optimal culture conditions for JK-1 were selected with pH 7, $30^{\circ}C$ and 100 rpm under anaerobic light and the effect on plant growth was tested by pot assay. Inoculation of JK-1 with 3% (v/v) level caused increase in shoot and root dry weigh that varied from 20%~58% to 40%~28% in young radish in camparison to uninoculated treatment at 50 days of growth. The study suggests that the JK-1 isolate may serve as efficient biofertilizer inoculants to promote plant growth.

Optimization of Culture Condition for Enhancing the Probiotics Functions (프로바이오틱스의 기능성 향상을 위한 배양법)

  • Chang, Bo Yoon;Han, Ji Hye;Cha, Bum-Suk;Ann, Sung-Ho;Kim, Sung Yeon
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.3
    • /
    • pp.295-301
    • /
    • 2015
  • The functions of probiotics, particularly Lactic acid bacteria, have been studied in a range of human diseases, including cancer, infectious diseases, gastrointestinal disorders, and allergies. Among the many benefits associated with the consumption of probiotics, modulation of immune activity has received the most attention. This study aimed at investigating the improved immune stimulatory and stability of L. plantarum when cultivated on modified basal media supplemented with the Undaria pinnatifida co-cultured with L. plantarum. An in vitro test showed that U. pinnatifida media cultured L. plantarum is strong enough to survive in the gastric juice (gastric and bile acid). Mouse macrophage-derived cell lines RAW 264.7 was used to measured immune stimulating activity of L. plantarum. When U. pinnatifida media cultured by L. plantarum was NO and $TNF-{\alpha}$ production is significantly increased compared to basal media cultured L. plantarum. These results show that U. pinnatifida could be applied for a component for cultivation of L. plantarum. This optimized U. pinnatifida medium can be used the improving of stability and immune function on production of probiotics.

Optimization of apical tip culture condition for In Vitro propagation of 'Gisela 5' dwarf cherry rootstock (양앵두 왜성대목 'Gisela 5'의 기내번식을 위한 정단배양조건의 최적화)

  • Xu, Junping;Kang, In-Kyu;Kim, Chang Kil;Han, Jeung-Sul;Choi, Cheol
    • Journal of Plant Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.49-54
    • /
    • 2015
  • Based on the results in this study, here we propose a systematic micropropagation process for 'Gisela 5' that is one of the important dwarfing cherry rootstocks. When the apical tips detached from newly developed shoot in spring season were cultured on the half strength MS media with 0.5 mg/L IBA and 0.5 ~ 1.0 mg/L BA, the cultures scored the highest acquisition rate at 90% for normal shoot with vigorous growth and without hyperhydricity. As next step, the young shoots maintained in vitro well multiplied on the full strength MS medium supplemented with 0.5 mg/L IBA and 0.5 mg/L BA, in which multiplication rate was approximately nine-fold. Given the half strength MS medium containing 2.0 mg/L IBA, each transplanted shoot further developed robust roots. Finally, the plantlets were easily acclimatized in the compost consisted of vermiculite, perlite, and peatmoss in the proportion of 1:1:1. We expect that the results are useful for cherry cultivation and its rootstock production.

Optimization of Fermentation Conditions for the Manufacture of Wild Grape Wine (산머루주 제조를 위한 발효조건의 최적화)

  • Kim, Seong-Ho
    • Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.24-37
    • /
    • 2008
  • Yeast with excellent ferment ability was isolated and selected from wild grape to manufacture wild grape wine. Wild grape wine by SMR-3 isolated from wild grape was better than other strains in quality, such as high alcohol content and low acidity, residual sugar, organic acid and fusel oil content. Fermentation condition was optimized to manufacture wild grape wine with response surface methodology using isolated SMR-3 as an alcohol fermentation strain. As a result of culture conditions, 10.61% of alcohol content was expected under the conditions of $21.91^{\circ}C$ fermenting temperature, $21.48^{\circ}brix$ of initial sugar content, and 14.65 day of fermentation time. Residual sugar content showed the lowest value at $24.48^{\circ}C$ fermentation temperature, $12.78^{\circ}brix$ of initial sugar content, and 9.02 day fermentation time. The highest level of sensory evaluation was found at $20.23^{\circ}C$ fermentation temperature, $25.30^{\circ}brix$ of initial sugar content, and 5.94 day fermentation time. Ethyl alcohol was the main alcohol component in wild grape wine and fusel oil in wild grape wine was hardly detected; thus, the quality of wild grape wine was considered excellent. The optimal fermentation conditions of wild grape wine was superimposed by deriving a regression equation for alcohol content, fusel oil, ethyl alcohol content, and overall palatability for each variable of wild grape wine. Hence, the optimal fermentation conditions are estimated to be: fermentation temperature $24{\sim}28^{\circ}C$, initial sugar content $20{\sim}24^{\circ}brix$, and fermenting time $12{\sim}14$ days.