Optimization of Production Medium by Response Surface Method and Development of Fermentation Condition for Monascus pilosus Culture

Monascus pilosus 배양을 위한 반응표면분석법에 의한 생산배지 최적화 및 발효조건 확립

  • Yoon, Sang-Jin (Division of biotechnology, Chonbuk National University) ;
  • Shin, Woo-Shik (Department of Molecular Bioscience, Kangwon National University) ;
  • Chun, Gie-Taek (Department of Molecular Bioscience, Kangwon National University) ;
  • Jeong, Yong-Seob (Research Center for industrial Development of Biofood Materials, Kangwon National University)
  • 윤상진 (전북대학교 응용생물공학부) ;
  • 신우식 (강원대학교 분자생명과학과) ;
  • 전계택 (강원대학교 분자생명과학과) ;
  • 정용섭 (바이오식품소재 개발 및 산업화 연구센터)
  • Published : 2007.10.30

Abstract

Monascus pilosus (KCCM 60160) in submerged culture was optimized based on culture medium and fermentation conditions. Monacolin-K (Iovastatin), one of the cholesterol lowing-agent which was produced by Monascus pilosus may maintain a healthy lipid level by inhibiting the biosynthesis of cholesterol. Plackett-Burman design and response surface method were employed to study the culture medium for the desirable monacolin-K production. As a result of experimental designs, optimized production medium components and concentrations (g/L) were determined on soluble starch 96, malt extract 44.5, beef extract 30.23, yeast extract 15, $(NH_4)_2SO_4$ 4.03, $Na_2HPO_4{\cdot}12H_2O$ 0.5, L-Histidine 3.0, $KHSO_4$ 1.0, respectively. Monacolin-K production was improved about 3 times in comparison with shake flask fermentation of the basic production medium. The effect of agitation speed (300, 350, 400 and 450 rpm) on the monacolin-K production were also observed in a batch fermenter. Maximum monacolin-K production with the basic production medium was 68 mg/L when agitation speed was 500 rpm. And it was found that all spherical pellets (average diameter of $1.0{\sim}1.5mm$) were dominant during fermentation. Based on the results, the maximum production of 185 mg/L of monacolin-K with the optimized production medium was obtained at pH (controlled) 6.5, agitation rate 400 rpm, aeration rate 1 vvm, and inoculum size 3%.

콜레스테롤 저하제이자 고지혈증 치료제의 하나인 모나콜린-K (lovastatin)의 생산을 높이기 위하여 플라스크 배양에서 생산배지 최적화를 위한 실험을 수행하였다. 기본생산배지에 탄소원, 무기인산염, 아미노산원과 무기원에 대한 영향을 조사하였다. 각각의 원소에 대해 모나콜린-K를 가장 많이 생산한 순서대로 3가지를 선별하여 Graeco-Latin square design에 의해 생산배지의 종류와 농도를 결정하였다. 하지만 상기 실험은 각 배지간의 교호작용을 검출할 수 없어서 모나콜린-K 생산에 대한 재현성이 떨어졌다. 따라서 탄소원, 질소원과 질소원의 농도에 대한 실험을 보완하였다. 통계학적 실험계획법인 Plackett-Burman design에 의해 배지 중 beef extract, $(NH_4)_2HSO_4$$KHSO_4$가 모나콜린-K 생산에 가장 영향력 있는 인자로 분석되었으며, 영향력이 있는 3가지 배지에 대해 배지 사이의 교호작용까지 분석할 수 있는 실험계획법인 중심합성계획법과 반응표면 분석법을 이용하여 생산배지를 최적화 하였다. 모나콜린-K 고생산을 위한 배지와 최적화된 농도 (g/L)는 soluble starch 96, malt extract 44.5, beef extract 30.23, yeast extract 15, $(NH_4)_2SO_4$ 4.03, $Na_2HPO_4{\cdot}12H_2O$ 0.5, L-Histidine 3.0과 $KHSO_4$ 1.0이며, 기본생산배지에서의 생산량보다 약 3배 증가한 558.96 mg/L의 생산을 보였다. 생물반응기에서 교반속도가 모나콜린-K 생산에 미치는 영향을 조사하기 위하여 기본생산배지를 이용하여 300, 350, 400과 500 rpm에서 실험을 수행하였다. 교반속도 500 rpm에서 68 mg/L으로 가장 높은 생산을 보였으며, 이 때 균의 형태구조는 300, 350과 400 rpm에서 펠��과 균사체가 공존하는 것과는 다르게 펠�� 형태로만 자라는 것이 확인 되었으며, 생물반응기를 이용하여 발효 시 펠�� 형태가 모나콜린-K 생산에 가장 좋은 형태구조임을 알 수 있었다. 확립된 최적생산배지를 이용하여 400 rpm, 1 vvm과 3% 초기 접종량에서 pH를 6.5로 조절한 경우 185 mg/L의 가장 높은 모나콜린-K가 생산 되었으며, 이때 균체량은 32 g/L를 나타내었다.

Keywords

References

  1. Ryu, B. H., M. K. Ahn, and J. O. Park (1995), Production of cholesterol inhibitor, Monacolin Produced from Monascus pilosus M-15, J. Korean Soc. Food Nutr. 24(1), 92-97
  2. Chen, M. H. and M. R. Johns (1994), Effect of carbon source on ethanol and pigment production by Monascus purpureus, Enz: Micorb. Technol. 16, 584-590 https://doi.org/10.1016/0141-0229(94)90123-6
  3. Mak, N. K., W. F. Fong, and Y. L. Wong-Leung (1990), Improved fermentative production of Monascus pigments in roller bottle culture, Enz: Microb. Technol. 12, 965-968 https://doi.org/10.1016/0141-0229(90)90118-A
  4. Endo, A. (1979), Monacolin K, a new hypocholestemic agent produced by a Monascus species, J. Antibiotics. 32(6), 852-854 https://doi.org/10.7164/antibiotics.32.852
  5. Endo, A., and H. Yamashita (1985), Microbial phosphorylation of compactin(ML-236B) and related compounds, J. Aintibiotics. 38(3), 328-332 https://doi.org/10.7164/antibiotics.38.328
  6. Mah, J. H., and H. J. Whang (1996), Screening of Monascus strains for antimicrobial activity and effect of change of nutrients and incubation conditions on antimicrobial activity, J. Korean Soc. Food Sri. Nurt. 25(6), 1080-1086
  7. Su, Y. C., J. J. Wang, and T. T. Lin (2003), Production of the secondary metabolites $\gamma$-aminobutyric acid and monacolin-K by Monascus, J. Ind Microbiol, Biotechnol. 30, 41-46 https://doi.org/10.1007/s10295-002-0001-5
  8. Broder, C. U. and P. E. Koehler (1980), Pigments produced by Monascus purpureus with regard to quality and quantity, J. Food Sci. 45, 567-569 https://doi.org/10.1111/j.1365-2621.1980.tb04102.x
  9. Pereira, D. G. and B. V. Kilikian (2001), Effect of yeast extract on growth kinetics of Monascus purpureus, Appl. Biochem. Biotechnol. 91/93 , 311-316 https://doi.org/10.1385/ABAB:91-93:1-9:311
  10. Kim, B. G., Y. S. Jeong, G. T. Chun, and Y. H. Lee (1999), Effect of medium components on the production of lovastatin by Aspergillus terreus, Korean J. Biotechnol. Bioeng, 14(1), 36-44
  11. Lee, J. and S. N. Agathos (1989), Effect of amino acid on the production of Cyclosporin A by Tolypocladium inflatum, Biotechnol, Lett. 11, 77-82 https://doi.org/10.1007/BF01192178
  12. Philippe, J. B., M. O. Loret, and G. A. Goma (2001), Control of the production of metabolites by Monascus in submerged culture, 11th World Congress of Food Science and Technology 2001, Seoul, Tu04-2, pp28
  13. Yoon, S. J. (2004), Optimization of production medium and development of fermentation condition for Monascus pilosus production, M. S. Thesis, Chonbuk National University
  14. Dubios, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956), Colotimetric method for determination of sugars and related substances, Anal. Chem. 28, 350-356 https://doi.org/10.1021/ac60111a017
  15. Kysilka, R. and V. Kren (1993), Determination of Lovastatin (mevilolin) and mevinolinic acid in fermentation liquids, J. Chromatogr. 630, 414-417
  16. Reinhard, H. and B. Zimmerli (1999), Reversed-phase liquid chromatographic behavior of mycotoxins citrinin and ochratoxin A, J. Chromatogr. 862, 147-159 https://doi.org/10.1016/S0021-9673(99)00929-2
  17. Zhang, M. L., C. X. Peng, and Y. F. Zhou (2000), US Patent, 6,046002
  18. Box, George E. P., William G. Hunter, and Stuart J. Hunter (1978), Statistics for Experimenters, John Wiley & Sons, Inc., New York
  19. Johanson, C. L., L.. Coolen, and J. H. Hunik (1998), Influence of morphology on product formation in Aspergillus awamori during submerged fermentations, Biotechnol. Pro. 14, 223-240
  20. Swift, R. J., A. Karandikar, A. M Griffen, P. J. Punt, C. A. Hondel, G. D. Robson, A. P. J. Trinci, and M. G. Wiebe (2000), The effect of organic nitrogen sources on recombinant glucoamylase production by Aspergillus niger in chemostat culture, Fungal Genetics and Biology, 31, 125-133 https://doi.org/10.1006/fgbi.2000.1241
  21. Placteu, R. L. and J. P. Burman (1946), The design of multifactorial experiments, Biometrika, 33, 302-325
  22. Lekha, P. K., Nagin Chand and B. K. Losane (1994), Computerized study of interactions among factors and their optimization response surface methodology for the production of tannin acyl hydrolase by Aspergillus niger PKL 104 under solid state fermentation, Biopro. Eng. 11, 7-15 https://doi.org/10.1007/BF00369609
  23. Amanullah, A., B. Tuttiett, and A. W. Nienow (1998), Agitator speed and dissolved oxygen effects in xanthan fermentation, Biotechnol. Bioeng, 57, 198-210 https://doi.org/10.1002/(SICI)1097-0290(19980120)57:2<198::AID-BIT8>3.0.CO;2-I