• 제목/요약/키워드: optimal systems

검색결과 6,746건 처리시간 0.037초

GIS를 이용한 상수관망 소블록 최적설계기법 개발 (Optimal design methodology of district metered area utilizing Geographic Information System)

  • 김경필;박용균;구자용
    • 상하수도학회지
    • /
    • 제29권2호
    • /
    • pp.223-231
    • /
    • 2015
  • District Metered Area (DMA) construction is one of the most cost effective alternatives for management of water loss (i.e., water leakage) and energy consumption (i.e., water pressure) in water distribution systems. Therefore, it's being implemented to numerous new and existing water distribution systems worldwide. However, due to the complexity of water distribution systems, especially large-scale and highly looped systems, it is still very difficult to define the optimal boundary of DMAs considering all the aspects of water distribution system management requirements. In this study, a DMA design methodology (or a DMA design model) was developed with Geographic Information Systems (GIS) and hydraulic distribution system model to determine the optimal DMA boundary.

유전 알고리즘을 이용한 현가장치의 기구학적 최적설계 (Optimum Design of Suspension Systems Using a Genetic Algorithm)

  • 이덕희;김태수;김재정
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.138-147
    • /
    • 2000
  • Vehicle suspension systems are parts which effect performances of a vehicle such as ride quality, handing characteristics, straight performance and steering effort etc. Kinematic design is a decision of joints` position for straight performance and steering effort. But, when vehicle is rebounding and bumping, chang of joints` displacement is nonlinear and a surmise of straight performance and steering effort at that joints` position is difficult. So design of suspension systems is done through a inefficient method of tried-and-error depending on designer`s experience. In this paper, kinematic design of suspension systems was done through the optimal design using a genetic algorithm. For this optimal design, the function for quantification of straight performance and steering effort was made, and the kinematic design method of suspension systems having this function as the objective function was suggested.

  • PDF

[ $H_2$ ]-optimal Control with Regional Pole Assignment via State Feedback

  • Wang Guo-Sheng;Liang Bing;Duan Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권5호
    • /
    • pp.653-659
    • /
    • 2006
  • The design of $H_2$-optimal control with regional pole assignment via state feedback in linear time-invariant systems is investigated. The aim is to find a state feedback controller such that the closed-loop system has the desired eigenvalues lying in some desired stable regions and attenuates the disturbance between the output vector and the disturbance vector. Based on a proposed result of parametric eigenstructure assignment via state feedback in linear systems, the considered $H_2$-optimal control problem is changed into a minimization problem with certain constraints, and a simple and effective algorithm is proposed for this considered problem. A numerical example and its simulation results show the simplicity and effectiveness of this proposed algorithm.

최적 제어를 위한 Supervisory control (Optimal supervisory control)

  • 박홍성;김면집;노갑선;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.498-503
    • /
    • 1991
  • This paper presents a framework of a optimal supervisory controller, which consists of decision rules and the supervisory controller proposed by Ramadge and Wonham. From the presented framwork we obtain optimal control patterns minimizing the given cost functions. The properties of the presented optimal supervisory controller are discussed. Two examples are given to illustrate a designing method of the optimal supervisory controller.

  • PDF

태양광발전시스템의 안정성을 고려한 최적 각도 설정에 관한 연구 (A Study on the Optimal Angle Setting Considering the Stability of Photovoltaic Systems)

  • 이여진;한세경;김성열
    • 전기학회논문지
    • /
    • 제67권4호
    • /
    • pp.498-504
    • /
    • 2018
  • The conventional photovoltaic(PV) systems are designed the installation angle for maximizing power output by considering a geographical characteristics, weather and climate conditions such as the solar radiation and atmosphere temperature. However, the PV generators must be designed to deal with the extreme situations like typhoons, earthquakes because PV systems are exposed to the ambient conditions and external shock due to condition of PV location. Especially, the wind has relatively higher influence on the design of PV systems, in this paper we proposed the method of determining the optimal nominal dimension of the facilities, which can withstand the maximum wind pressure. By using the proposed method, we determined the optimal installation angle for the aspect stability of PV facilities and amount of power output. Moreover, we analyzed the monthly amount of power for each installation angle of PV systems, and proposed the changing strategy of installation angle by determining the optimal angle to produce maximum power for each period.

Optimal load distribution for two cooperating robot arms using force ellipsoid

  • Choi, Myoung-Hwan;Cho, Hye-Kyung;Lee, Bum-Hee;Ko, Myoung-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1790-1795
    • /
    • 1991
  • The optimal load distribution for two cooperating robots is studied in this paper, and a new solution approach utilizing force ellipsoid is proposed. The load distribution problem is formulated as a nonlinear optimization problem with a quadratic cost function. The limit on instantaneous power is considered in the problem formulation as the joint torque constraints. The optimal solution minimizing energy consumption is obtained using the concept of force ellipsoid and the nonlinear optimization theory. The force ellipsoid provides a useful geometrical insight into the load distribution problem. Despite the presence of the joint torque constraints, the optimal solution is obtained almost as a closed form, in which the joint torques are given in terms of a single scalar parameter that can be obtained numerically by solving a scalar equation.

  • PDF

Optimal Operation for Reverse Supply Chain Incorporating Inspection Policy into Remanufacturing of Used Products

  • Yamaguchi, Shin;Kusukawa, Etsuko
    • Industrial Engineering and Management Systems
    • /
    • 제16권1호
    • /
    • pp.1-21
    • /
    • 2017
  • This paper discusses a reverse supply chain (RSC) which consists of the process flows from procurement of used products collected from a market, through remanufacturing products from the used products, to sales of the products in a market. In general, it is conceivable for the RSC to face the uncertainty in quality of used products collected from a market. Inspection is one of efficient methods to deal with the problem regarding quality of used products. However, there is a trade-off between inspection cost and inspection accuracy. This paper focuses on the following five types of inspection: (1) 100% inspection, (2) sampling inspection, (3) sampling inspection with screening of rejected lots, (4) sampling inspection with screening of acceptable lots, and (5) no inspection, and determines the optimal operation consisting of the optimal number of procured used products and the optimal inspection policy. Numerical analysis clarifies not only how changes of conditions of the RSC affect the manufacturer's optimal operation but also features of each inspection type. In addition, from the results of numerical analysis, this paper shows the usability to add the proposed inspection in this paper, the sampling inspection with screening of acceptable lots, to choices of inspection type.

상호결합제어기를 이용한 2축 서보메커니즘의 최적튜닝 (Optimal Tuning of Biaxial Servomechanisms Using a Cross-coupled Controller)

  • 배호규;정성종
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1209-1218
    • /
    • 2006
  • Precision servomechanisms are widely used in machine tool, semiconductor and flat panel display industries. It is important to improve contouring accuracy in high-precision servomechanisms. In order to improve the contouring accuracy, cross-coupled control systems have been proposed. However, it is very difficult to select the controller parameters because cross-coupled control systems are multivariable, nonlinear and time-varying systems. In this paper, in order to improve contouring accuracy of a biaxial servomechanism, a cross-coupled controller is adopted and an optimal tuning procedure based on an integrated design concept is proposed. Strict mathematical modeling and identification process of a servomechanism are performed. An optimal tuning problem is formulated as a nonlinear constrained optimization problem including the relevant controller parameters of the servomechanism. The objective of the optimal tuning procedure is to minimize both the contour error and the settling time while satisfying constraints such as the relative stability and maximum overshoot conditions, etc. The effectiveness of the proposed optimal tuning procedure is verified through experiments.

JND를 이용한 휴대폰의 최적 진동 주파수 설계 (JND-based Mobile Phone Optimal Vibration Frequency)

  • 이봉왕;박현호;명노해
    • 대한산업공학회지
    • /
    • 제30권1호
    • /
    • pp.27-35
    • /
    • 2004
  • A study was conducted to investigate an optimal vibration frequency for mobile phones with just noticeable difference(JND). The just noticeable difference, Weber's law, is the minimum amount by which stimulus intensity must be changed in order to produce a noticeable variation in sensory experience. In order to find the optimal vibration frequency, sixteen frequencies ranged from 24Hz to 603Hz were selected. Subjects then wereasked to differentiate a pair of vibration frequencies. For the analysis, the psychometric function to determine the optimal vibration frequency and the logistic regression to validate the determined frequency were used. The results show that the 2nd order polynomial equations were best fitted for the JND psychometric function and the optimal mobile phone vibrations were determined at 140Hz, 151 Hz, and 160Hz. With the ogive-shaped psychometric function developed by the logistic regression, the results of this study was validated that the determined vibration frequencies (140Hz, 151 Hz, and 160Hz) were optimal mobile phone vibration frequencies.

Optimal Energy Shift Scheduling Algorithm for Energy Storage Considering Efficiency Model

  • Cho, Sung-Min
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1864-1873
    • /
    • 2018
  • Energy shifting is an innovative method used to obtain the highest profit from the operation of energy storage systems (ESS) by controlling the charge and discharge schedules according to the electricity prices in a given period. Therefore, in this study, we propose an optimal charge and discharge scheduling method that performs energy shift operations derived from an ESS efficiency model. The efficiency model reflects the construction of power conversion systems (PCSs) and lithium battery systems (LBSs) according to the rated discharge time of a MWh-scale ESS. The PCS model was based on measurement data from a real system, whereas for the LBS, we used a circuit model that is appropriate for the MWh scale. In addition, this paper presents the application of a genetic algorithm to obtain the optimal charge and discharge schedules. This development represents a novel evolutionary computation method and aims to find an optimal solution that does not modify the total energy volume for the scheduling process. This optimal charge and discharge scheduling method was verified by various case studies, while the model was used to realize a higher profit than that realized using other scheduling methods.