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H;-optimal Control with Regional Pole Assignment via State Feedback

Guo-Sheng Wang, Bing Liang, and Guang-Ren Duan

Abstract: The design of H,-optimal control with regional pole assignment via state feedback in
linear time-invariant systems is investigated. The aim is to find a state feedback controller such
that the closed-loop system has the desired eigenvalues lying in some desired stable regions and
attenuates the disturbance between the output vector and the disturbance vector. Based on a
proposed result of parametric eigenstructure assignment via state feedback in linear systems, the
considered H,-optimal control problem is changed into a minimization problem with certain
constraints, and a simple and effective algorithm is proposed for this considered problem. A
numerical example and its simulation results show the simplicity and effectiveness of this

proposed algorithm.
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1. INTRODUCTION

In the past years, the H,-optimal control theory has
attracted much attention, see e.g., [1-3] and the
references therein. The well known LQG (Linear
Quadratic Gaussian) and LQR (Linear Quadratic
Regulator) designs in control are examples of the H,
synthesis procedure. The objective of the H, optimal
problem is to find a controller that minimizes a
quadratic performance index (the H, norm) of the
system and offers a way of combining the design
criteria of quadratic performance and disturbance
attenuation. But such a controller design method
cannot guarantee that the closed-loop systems have
good transient responses.

It is well known that the systems’ transient
responses are determined mainly by the locations of
the systems’ eigenvalues. As an important design
method associated with eigenvalues and eigenvectors
in control theory, eigenstructure assignment has
attracted much attention of many researchers, such as
[4-21]. One type of approach for eigenstructure
assignment is the parametric approach, which
parameterizes all the solutions to the problem, such as
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[12-16]. This method presents complete, explicit and
parametric expressions of all the feedback gain
matrices and the closed-loop eigenvector matrices.
Moreover, this method offers all the design degrees of
freedom, which can be further utilized to satisfy some
additional performances, such as robustness [17-19].
In this paper, we will consider the application of the
parametric eigenstructure assignment approach to the
Hy-optimal control with regional pole assignment.
There are a few publications on the similar kind of
this problem, such as [22-25]. Yang et al. [22]
investigate the H, design with pole placement
constraints via an LMI approach in uncertainty linear
systems and propose a necessary and sufficient
condition for the solvability of the problem are given
in terms of a set of feasible LMIs. Apkarian ef al. [23]
consider the problem of eigenstructure assignment,
and H, synthesis with enhanced LMI, and the
proposed methods involve a specific transformation
on the Lyapunov variables and a reciprocal variant of
the Projection Lemma. Chilali et al. [24] addresses the
design of state- or output-feedback H,, controllers that
satisfy additional constraints on the closed-loop pole
location and sufficient conditions for feasibility are
derived for a general class of convex regions of the
complex plane. Lam et al. [25] present a computation
method for pole assignment with eigenvalue and
stability robustness and the robustness measure is
constructed to balance the tradeoff between an
eigenvalue sensitivity measure and a stability
robustness measure, both defined in terms of the non-
differentiable spectral norm. In this paper, the design
degrees offered by the parametric eigenstructure
assignment method in [12] are utilized to consider the
design of Hy-optimal control with regional pole
assignment in linear time-invariant systems. The aim
is to design a state feedback controller such that the
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closed-loop system has the desired closed-loop poles
lying in some desired regions and the disturbance
attenuation performance. By utilizing a parametric

solution for state feedback eigenstructure assignment

proposed, the disturbance attenuation index is
parameterized and the considered H»-optimal control
with regional pole assignment is changed into a
minimization problem with certain constraints. And
then an effective and simple algorithm is proposed.
This paper is organized as follows. The next section
gives the description of H,-optimal control with
regional pole assignment. Section 3 proposes the
parametric result of eigenstructure assignment via
state feedback in linear time-invariant systems. Based
on the proposed parametric method of state feedback
eigenstructure assignment, solutions to the considered
problem are proposed, and a simple and effective
algorithm is developed in Section 4. Section 5
presents an illustrative example to show the simplicity
and effectiveness of the proposed algorithm.
Concluding remarks are drawn in Section 6.

2. PROBLEM FORMULATION

Consider a linear time-invariant continuous system
in the form of

x=Ax+Bu+Fw
(1)

y=Cx+Du,

where x e R"is the state vector, u € R’ is the control
vector, we R is the exogenous input vector and
yeR"™ is the output vector, respectively; 4, B, C and

D are known matrices with appropriate dimensions
with rank(B)=r, and satisfy the following assump-
tion:

Assumption A: The

matrix pair (A4,B) is

controllable, that is,
rank ([4-sl, B])=n, VseC.

Applying the following state feedback controller
u=Kx, KeR™, 2)

to system (1), obtains the closed-loop system as

%=(A4+BK)x+Fw
{ (3)

y=(C + DK)x.

Recall the fact that non-defective matrices possess
eigenvalues which are less insensitive with respect to
parameter perturbations, in this paper we only
consider that the eigenvalues of the closed-loop
system (3) are distinct and self-conjugate. Let the
closed-loop eigenvalues of system (3) be s;,€C,

i=1, 2, ---, n, and their corresponding eigenvectors

be v;eC",i=1, 2, -+, n. Then there hold
(A+BK)y; =s,v;,i=1, 2, -+, n. 4)

From system (3), the closed-loop system transter
function from w to y can be given by

T,,,(K)=(C+DK)(sl, - A~ BK)"'F. (5)

Let P be the positive semi-definite solution of the
equation

(A+BK)T P+ P(4+BK)+(C+DK)T (C+DK)=0.
(6)

It can be shown that

“TW(K)”2 - \Jtrace(FT PF), (7)

where P is the positive semi-definite solution to (6).
Then the problem to be considered in this paper can
be described as follows.

Problem H,: Given system (1) satisfying Assumpt-
ion A, a group of self-conjugate and distinct scalars

s;€C, i=1 2, -, n and a group of stable regions
S;, i=1,2,---, n on the left complex plane. The
design objective is to find a state feedback controller

(2) to achieve the minimization of “TJ,W(K)“2 in (7),1.e.

mlgn ”Tyw (K)‘

®)

2 ]

which subject to the following conditions:
1) Equations in (4) hold and det(}') = 0,

2) s;ed8;, i=1,2, -, n

3. CLOSED-LOOP EIGENSTRUCTURE
ASSIGNMENT

Set

A =diag[s; s5---5,1, V= vp---v,1
Then (4) is equivalent with

AV + BKV =VA. 9)
Denote

W =KV, (10)
there holds

AV + BW =VA. (11

Because Assumption A is satisfied, applying a
series of element matrix transformations to [4—s/,

B}, we can obtain a pair of unimodular matrices
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P(s) eR™"[s] and O(s)e R[] satisfying

P(s) [d-sl, B] Q(s)=[0 I,], VseC. (12)

Partition Q(s) into the following form

O11(s) Qpp(s)

i) = liQZl () Onls)

} A1(5) ERnxr[S]- (13)

Based on the above reasoning, we can give the
following theorem which offers the parametric
solutions to state feedback eigenstructure assignment
for system (1).

Theorem 1 [12]: Given matrices 4eR™" and
BeR™" with full rank, if the matrix pair (4, B) is

controllable, then the parametric expressions of all the
state feedback gain matrices K in (9) can be given
as follows

K=wy, (14)
where

V=n v vols Vi =0n(s) (15)
and

W=lm w w,l, wi=00(s))f;,  (16)

where f,eC’,i=1,2,---, n, are a group of free
1

parametric vectors, and satisfy the following

constraints:
Constraint 1: s, :Ej = =fj, Lj=1,2,-m
Constraint 2: det(V)=0.

From the above Theorem 1, we can find this
parametric  eigenstructure assignment has the
following advantages:

Remark A: The above general parametric
expressions (15) for the closed-loop eigenvectors
associated with the assigned closed-loop eigenvalues
are in a direct closed explicit parametric form, and are
thus simpler and more convenient to use. They can be
immediately written out as soon as the pair of right
coprime polynomial matrices Q;(s) and O,;(s)

satisfying (12) are obtained.
Remark B: Both the free parametric vectors

f,eC’,i=1,2,---, n and the undetermined closed-

loop eigenvalues s, €C, i=1,2,---, n can be
regarded as the design freedom offered by this
parametric method. When more requirements beyond
the basic closed-loop eigenstructure are imposed on
the closed-loop system, we can first turn these
requirements into some additional constraints on the

closed-loop eigenvalues or/and the parameters

f;,eC’, i=1,2,--, n, and then solve from (14)-
(16) the required solution to the problem by restricting
parameters f; €C" and s;€C, i=1,2,,n to

satisfy the set of additional constraints.
4. SOLUTION TO PROBLEM H,

Based on the parametric results in Theorem 1, we
can obtain the following lemma, which gives the
parametric solution to (6).

Lemma 1: Given matrices 4 € R™", BeR™,

CeR™" and DeR™", where the matrix B is
full rank. If the matrix pair (4, B) is controllable,
then all the solutions of P in (6) can be given as

7 €T +w] D"Y(Cv; + Dw))

S;+S;

N ek)

XK

p=-vT

where
V=[w v v, W=lw w - w,]

are determined by (15) and (16), respectively.
Proof: Noticing (9), which is equivalent to the
following equation

A+BK =VAV™", (18)
Substituting (18) into (6), obtains
VAV Y P+ PVAV™' =—(C+ DK) (C + DK).(19)
Again denote

P=vTpy or P=v TPy (20)
Then (19) can be changed into

AP+ PA=-vT(C+DK) (C+DK)V. (21)

Denote]5=[ﬁij]nxn,noticing[)ij =Dj> I, J=1 2,
n, from (21) we can obtain
v/ CT +w DT)(Cv, + Dw))

8;+5;

Py = (22)

From P=V"TPr~' itis clear to see that (17) holds.
According to Theorem 1 and Lemma 1, we can set

P=P(s;, fi, i=1,2,+, n), (23)
which denotes that the matrix P in (7) is parame-

terized by s5;€C and f,€C’, i=1, 2,-, n. From
Theorem 1, Lemma 1 and the above reasoning, we
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can obtain the following theorem, which gives the
solutions to Problem H>.

Theorem 2: Given matrices A<R™", BeR"™",
CeR™", DeR™", and FeR™ in system (1),

where the matrix B is full rank. If the matrix pair
(4, B) is controllable, the desired state feedback

gain matrix K in Problem H; can be given by (14),
where the parameters s; €C and f;eC’, i=1, 2,
---, n are determined by the following minimization
problem:

min  \Jtrace(FT P(f;,5,)F), (24)

{s;}cC,{fi}cC”

subject to Constraints 1, 2, and

Constraint3: s;€8;, i=1, 2, .-, n.

Denote the real finite eigenvalues s; by &;, and
the corresponding parameter f; by #; denote a pair
of self-conjugate eigenvalues s; and s; by s; = 5 =J;
+6;j, and the corresponding parameter f; = 7, =
hi+hj, where &; and A, i=1, 2,---, n are real.
Then Constraint 1 automatically holds and Constraint
3 is changed into

Constraint 3’: ¢, <8, <b, i=1, 2,--
a; and b, i=1 2,---,n,
numbers.

With the above denotations, the minimization index

(24) in Theorem 2 can be simplified into the following
problem

, 1, where

are some specified real

min  \trace(FT P(5,,h;)F), (25
(SR I3k

s. ¢. Constraint 2 and 3°. ‘

Based on Theorem 2, we can develop the following
algorithm, which give the detail steps to solve
Problem H,.

Algorithm H,:

1. Compute a pair of unimodular matrices P(s) and
Q(s) satisfying (12), and partition Q(s) as in (13).

2. Set the parametric expressions of free vectors
fi» i=1, 2,---, n, and compute the parametric
expressions of matrices ¥ and W from (15) and
(16).

3. From (17), compute the parametric expressions of P.

4. Determine s;€C and f,eC’, i=1 2,---, n

satisfying Constraints 1-3or &§;€R and % eR’,
i=1, 2,---, n satisfying constraint 2 and 3’, by

solving the minimization problem (24) or (25).
5. Compute the gain matrix K, from (14) and the
obtained matrices V" and W.

Obviously, the above algorithm is in sequential
order, while no ‘going back’ procedures are involved.
Further, because of the completeness of the
eigenstructure  assignment approach used, the
optimality of the solution to Problem H, is totally
dependent on the solution to the optimization problem
(24) or (25). For solution to these minimization
problems, there are many software packages that can
be used, such as

1) We have found that the Matlab package
FMINCON is very reliable and suitable for solving
these minimization problems, where FMINCON finds
a constrained minimum of a function of several
variables and solves problems of the form:

min F(X)
X

subject to AX < B or/and 4X = B (linear constraints);
C(X)<0 or/and C(X)=0 (nonlinear constraints);
LB<X<UB.

2) We can also solve the optimal problem by the
gradient method. Denote

Jy =Jtrace(FT P(f;,5,)F),

and

J, =Jtrace(FT (8, 1) F),

then the necessary conditions for the optimal problem
(24) or (25) are, respectively,

%=0’ %zo, i=1, 2, n,

Os; af;
where the parameters s, e C and f;e€C’, i=1, 2,
.-+, n satisfy Constraints 1-3, and

o _

o _
86,

0, =
oh;

0, i=1, 2,---, n,

where the parameters &; € R and h e€R”, i=1, 2,
.-, n satisfy Constraint 2 and 3°.

5. AN ILLUSTRATIVE EXAMPLE

Consider a linear system in the form of (1) with the
following matrices

010 0 0
-1 0 1
A=|0 0 1|, B=|0 1|, C= ,
0 1 -1
1 0 1 10 _
100
-1 1
D= ,F=|0 1 0|
1 -1
00 1
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It is easy to find that the matrix pair (4, B) is
controllable. Assume that the closed-loop eigenvalues
are

-3< 8 < —1, -7< re(S2’3) < —4, -8< l'm(Sz’:;) <8.

Thus from Algorithm H,, we have the following steps:
1) By applying a series of element matrix
transformations to [4—s/; B], we can obtain the

unimodular matrix Q(s) and partition it as follows

I 0 Ix x x
s 0 i X X X

O()=| 0 1 _1x x x|
0 s-1{x x x

_SZ -1 i X X X

2) Set f; =la; b],i=1, 2, 3. From (15) and (16),
we can obtain
q ) a
V= S19 52b2 S3b3 ,
b by b
. (51 =Dby (s -Dby (53 -D)b3
T2 2 2 ;
sjay—b sya; —by s3a3 —b
3) From (17), we can easily obtain the parametric
expression of P.
4) By utilizing the function FMINCON in toolbox
of Matlab, we can solve the minimization problem

(25) and obtain the minimization value as 2.7424. In
this case,

Sl :_1, S2,3 =—4i0.1783l,

4.1987 —0.1439 ¥ 0.3184;
ji = > f'2,3 = _ Lt
-3.3710 1.7984 7 0.3101;

5) From (14), we obtain the desired gain matrix as

-4.9927
—-0.8945 |

—-1.1046
-5.0073

-3.5074
-3.9225

Arbitrarily choosing

s =—1, s9=-4+0.1783i,

5 242i
0 = 0 =
A [20}’ f25 {3 + 41}’

obtains the value of (25) as
arbitrarily choosing gain matrix as

-8.4730
~5.6166 |

11.8867 and the

o _|325117 6.6196
17.9392 -1.5270
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Fig. 2. Comparisons of the second output errors under
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In order to further show the effect of Algorithm H,,
we select the random numbers in [-1, 1] as the

disturbance. In Figs. 1 and 2, “K” represents the
output errors between the system without disturbances
and the system with disturbances under the desired

gain K, and “ K°» represents the output errors

between the system without disturbances and the
system with disturbances under the arbitrarily

choosing gain K 0. Then we can find that the outputs
of the system with no disturbances are very close to
those of the system with disturbances under the
desired gain K, while the outputs of the system with
no disturbances are far from those of the system with
disturbances under the arbitrarily choosing gain K°.

6. CONCLUSION

By utilizing a parametric method of state feedback
eigenstructure assignment, a new design method for
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H, —optimal control with regional pole assignment via
state feedback in linear time-invariant systems is

proposed in this paper. By using this proposed method,

the closed-loop system has the desired eigenvalues
lying in some desired stable regions and the A, norm
is minimized. Thus this method can guarantee that the
closed-loop systems have good transient responses

and

the disturbances can be attenuated from the

outputs. An illustrative example and the simulation
results show the benefits of this proposed method.
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