• 제목/요약/키워드: optimal subset size

검색결과 7건 처리시간 0.021초

Self-adaptive and Bidirectional Dynamic Subset Selection Algorithm for Digital Image Correlation

  • Zhang, Wenzhuo;Zhou, Rong;Zou, Yuanwen
    • Journal of Information Processing Systems
    • /
    • 제13권2호
    • /
    • pp.305-320
    • /
    • 2017
  • The selection of subset size is of great importance to the accuracy of digital image correlation (DIC). In the traditional DIC, a constant subset size is used for computing the entire image, which overlooks the differences among local speckle patterns of the image. Besides, it is very laborious to find the optimal global subset size of a speckle image. In this paper, a self-adaptive and bidirectional dynamic subset selection (SBDSS) algorithm is proposed to make the subset sizes vary according to their local speckle patterns, which ensures that every subset size is suitable and optimal. The sum of subset intensity variation (${\eta}$) is defined as the assessment criterion to quantify the subset information. Both the threshold and initial guess of subset size in the SBDSS algorithm are self-adaptive to different images. To analyze the performance of the proposed algorithm, both numerical and laboratory experiments were performed. In the numerical experiments, images with different speckle distribution, different deformation and noise were calculated by both the traditional DIC and the proposed algorithm. The results demonstrate that the proposed algorithm achieves higher accuracy than the traditional DIC. Laboratory experiments performed on a substrate also demonstrate that the proposed algorithm is effective in selecting appropriate subset size for each point.

상호정보량과 Binary Particle Swarm Optimization을 이용한 속성선택 기법 (Feature Selection Method by Information Theory and Particle S warm Optimization)

  • 조재훈;이대종;송창규;전명근
    • 한국지능시스템학회논문지
    • /
    • 제19권2호
    • /
    • pp.191-196
    • /
    • 2009
  • 본 논문에서는 BPSO(Binary Particle Swarm Optimization)방법과 상호정보량을 이용한 속성선택기법을 제안한다. 제안된 방법은 상호정보량을 이용한 후보속성부분집합을 선택하는 단계와 BPSO를 이용한 최적의 속성부분집합을 선택하는 단계로 구성되어 있다. 후보속성부분집합 선택 단계에서는 독립적으로 속성들의 상호정보량을 평가하여 순위별로 설정된 수 만큼 후보속성들을 선택한다. 최적속성부분집합 선택 단계에서는 BPSO를 이용하여 후보속성부분집합에서 최적의 속성부분집합을 탐색한다. BPSO의 목적함수는 분류기의 정확도와 선택된 속성 수를 포함하는 다중목적함수(Multi-Object Function)을 이용하였다. 제안된 기법의 성능을 평가하기 위하여 유전자 데이터를 사용하였으며, 실험결과 기존의 방법들에 비해 우수한 성능을 보임을 알 수 있었다.

Optimal Rates of Convergence in Tensor Sobolev Space Regression

  • Koo, Ja-Yong
    • Journal of the Korean Statistical Society
    • /
    • 제21권2호
    • /
    • pp.153-166
    • /
    • 1992
  • Consider an unknown regression function f of the response Y on a d-dimensional measurement variable X. It is assumed that f belongs to a tensor Sobolev space. Let T denote a differential operator. Let $\hat{T}_n$ denote an estimator of T(f) based on a random sample of size n from the distribution of (X, Y), and let $\Vert \hat{T}_n - T(f) \Vert_2$ be the usual $L_2$ norm of the restriction of $\hat{T}_n - T(f)$ to a subset of $R^d$. Under appropriate regularity conditions, the optimal rate of convergence for $\Vert \hat{T}_n - T(f) \Vert_2$ is discussed.

  • PDF

A New Distance Measure for a Variable-Sized Acoustic Model Based on MDL Technique

  • Cho, Hoon-Young;Kim, Sang-Hun
    • ETRI Journal
    • /
    • 제32권5호
    • /
    • pp.795-800
    • /
    • 2010
  • Embedding a large vocabulary speech recognition system in mobile devices requires a reduced acoustic model obtained by eliminating redundant model parameters. In conventional optimization methods based on the minimum description length (MDL) criterion, a binary Gaussian tree is built at each state of a hidden Markov model by iteratively finding and merging similar mixture components. An optimal subset of the tree nodes is then selected to generate a downsized acoustic model. To obtain a better binary Gaussian tree by improving the process of finding the most similar Gaussian components, this paper proposes a new distance measure that exploits the difference in likelihood values for cases before and after two components are combined. The mixture weight of Gaussian components is also introduced in the component merging step. Experimental results show that the proposed method outperforms MDL-based optimization using either a Kullback-Leibler (KL) divergence or weighted KL divergence measure. The proposed method could also reduce the acoustic model size by 50% with less than a 1.5% increase in error rate compared to a baseline system.

개선된 배깅 앙상블을 활용한 기업부도예측 (Bankruptcy prediction using an improved bagging ensemble)

  • 민성환
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.121-139
    • /
    • 2014
  • 기업의 부도 예측은 재무 및 회계 분야에서 매우 중요한 연구 주제이다. 기업의 부도로 인해 발생하는 비용이 매우 크기 때문에 부도 예측의 정확성은 금융기관으로서는 매우 중요한 일이다. 최근에는 여러 개의 모형을 결합하는 앙상블 모형을 부도 예측에 적용해 보려는 연구가 큰 관심을 끌고 있다. 앙상블 모형은 개별 모형보다 더 좋은 성과를 내기 위해 여러 개의 분류기를 결합하는 것이다. 이와 같은 앙상블 분류기는 분류기의 일반화 성능을 개선하는 데 매우 유용한 것으로 알려져 있다. 본 논문은 부도 예측 모형의 성과 개선에 관한 연구이다. 이를 위해 사례 선택(Instance Selection)을 활용한 배깅(Bagging) 모형을 제안하였다. 사례 선택은 원 데이터에서 가장 대표성 있고 관련성 높은 데이터를 선택하고 예측 모형에 악영향을 줄 수 있는 불필요한 데이터를 제거하는 것으로 이를 통해 예측 성과 개선도 기대할 수 있다. 배깅은 학습데이터에 변화를 줌으로써 기저 분류기들을 다양화시키는 앙상블 기법으로 단순하면서도 성과가 매우 좋은 것으로 알려져 있다. 사례 선택과 배깅은 각각 모형의 성과를 개선시킬 수 있는 잠재력이 있지만 이들 두 기법의 결합에 관한 연구는 아직까지 없는 것이 현실이다. 본 연구에서는 부도 예측 모형의 성과를 개선하기 위해 사례 선택과 배깅을 연결하는 새로운 모형을 제안하였다. 최적의 사례 선택을 위해 유전자 알고리즘이 사용되었으며, 이를 통해 최적의 사례 선택 조합을 찾고 이 결과를 배깅 앙상블 모형에 전달하여 새로운 형태의 배깅 앙상블 모형을 구성하게 된다. 본 연구에서 제안한 새로운 앙상블 모형의 성과를 검증하기 위해 ROC 커브, AUC, 예측정확도 등과 같은 성과지표를 사용해 다양한 모형과 비교 분석해 보았다. 실제 기업데이터를 사용해 실험한 결과 본 논문에서 제안한 새로운 형태의 모형이 가장 좋은 성과를 보임을 알 수 있었다.

유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용 (Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating)

  • 안현철
    • 경영정보학연구
    • /
    • 제16권3호
    • /
    • pp.161-177
    • /
    • 2014
  • 기업신용등급은 금융시장의 신뢰를 구축하고 거래를 활성화하는데 있어 매우 중요한 요소로서, 오래 전부터 학계에서는 보다 정확한 기업신용등급 예측을 가능케 하는 다양한 모형들을 연구해 왔다. 구체적으로 다중판별분석(Multiple Discriminant Analysis, MDA)이나 다항 로지스틱 회귀분석(multinomial logistic regression analysis, MLOGIT)과 같은 통계기법을 비롯해, 인공신경망(Artificial Neural Networks, ANN), 사례기반추론(Case-based Reasoning, CBR), 그리고 다분류 문제해결을 위해 확장된 다분류 Support Vector Machines(Multiclass SVM)에 이르기까지 다양한 기법들이 학자들에 의해 적용되었는데, 최근의 연구결과들에 따르면 이 중에서도 다분류 SVM이 가장 우수한 예측성과를 보이고 있는 것으로 보고되고 있다. 본 연구에서는 이러한 다분류 SVM의 성능을 한 단계 더 개선하기 위한 대안으로 유전자 알고리즘(GA, Genetic Algorithm)을 활용한 최적화 모형을 제안한다. 구체적으로 본 연구의 제안모형은 유전자 알고리즘을 활용해 다분류 SVM에 적용되어야 할 최적의 커널 함수 파라미터값들과 최적의 입력변수 집합(feature subset)을 탐색하도록 설계되었다. 실제 데이터셋을 활용해 제안모형을 적용해 본 결과, MDA나 MLOGIT, CBR, ANN과 같은 기존 인공지능/데이터마이닝 기법들은 물론 지금까지 가장 우수한 예측성과를 보이는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안모형이 더 우수한 예측성과를 보임을 확인할 수 있었다.

재무예측을 위한 Support Vector Machine의 최적화 (Optimization of Support Vector Machines for Financial Forecasting)

  • 김경재;안현철
    • 지능정보연구
    • /
    • 제17권4호
    • /
    • pp.241-254
    • /
    • 2011
  • Support vector machines(SVM)은 비교적 최근에 등장한 데이터마이닝 기법이지만, 재무, CRM 등의 경영학 분야에서 많이 연구되고 있다. SVM은 인공신경망과 필적할 만큼의 예측 정확도를 보이는 사례가 많았지만, 암상자로 불리는 인공신경망 모형에 비해 구축된 예측모형의 구조를 이해하기 쉽고, 인공신경망에 비해 과도적합의 가능성이 적어서 적은 수의 데이터에서도 적용 가능하다는 장점을 가지고 있다. 하지만, 일반적인 SVM을 이용하려면, 인공신경망과 마찬가지로 여러 가지 설계요소들을 설계자가 선택하여야 하기 때문에 임의성이 높고, 국부 최적해에 수렴할 가능성도 크다. 또한, 많은 수의 데이터가 존재하는 경우에는 데이터를 분석하고 이용하는데 시간이 소요되고, 종종 잡음이 심한 데이터가 포함된 경우에는 기대하는 수준의 예측성과를 얻지 못할 가능성이 있다. 본 연구에서는 일반적인 SVM의 장점을 그대로 유지하면서, 전술한 두 가지 단점을 보완한 새로운 SVM 모형을 제안한다. 본 연구에서 제안하는 모형은 사례선택기법을 일반적인 SVM에 융합한 것으로 대용량의 데이터에서 예측에 불필요한 데이터를 선별적으로 제거하여 예측의 정확도와 속도를 제고할 수 있는 방법이다. 본 연구에서는 잡음이 많고 예측이 어려운 것으로 알려진 재무 데이터를 활용하여 제안 모형의 유용성을 확인하였다.