• Title/Summary/Keyword: optimal operation planning

Search Result 199, Processing Time 0.027 seconds

Optimal Transmission Expansion Planning Considering the Uncertainties of the Power Market

  • Bae, In-Su;Son, Min-Kyun;Kim, Jin-O
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.239-245
    • /
    • 2010
  • Today, as power trades between generators and loads are liberalized, the uncertainty level of power systems is rapidly increasing. Therefore, transmission operators are required to incorporate these uncertainties when establishing an investment plan for effective operation of transmission facilities. This paper proposes the methodology for an optimal solution of transmission expansion plans for the long-term in a deregulated power system. The proposed model uses the probabilistic cost of transmission congestion for various scenarios and the annual increasing rates of loads. The locations and the installation times of expanded transmissions lines with minimum cost are acquired by the model. To minimize the investment risk, the Mean-Variance Markowitz portfolio theory is applied to the model. In a case study, the optimal solution of a transmission expansion plan is obtained considering the uncertain power market.

Operation Planning of Reserve in Microgrid Considering Market Participation and Energy Storage System

  • Lee, Si Young;Jin, Young Gyu;Kim, Sun Kyo;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1089-1095
    • /
    • 2014
  • Innumerable microgrids would be operated independently by individual operators in a future smart grid. This kind of decentralized power system requires entirely different operation scheme in the actual power system and electricity market operation. Especially, frequency regulation is very important for successive energy trade in this multi-microgrid circumstance. This paper presents an optimal energy and reserve market participation strategy and operation strategy of energy storage system (ESS) by a microgrid operator (MGO). For definite evaluation of the proposed strategy, we postulate that the MGO should participate in the Power Exchange for Frequency Control (PXFC) market, which was devised by Maria Ilic and her coworkers and is suitable to the decentralized operation circumstances. In particular, optimal reserve capacity of the frequency control market and optimal market participation ratio of ESS between frequency control market and energy market are derived theoretically and evaluated by simulations utilizing Nordic Pool Elspot price data.

Planning A Customer Transportation System Operation using Simulation (시뮬레이션을 이용한 고객 수송 시스템 운영 방안 수립)

  • Lee, Y.J.;Kong, M.C.;Yoon, S.Y.;Jeon, T.B.
    • Journal of Industrial Technology
    • /
    • v.37 no.1
    • /
    • pp.5-11
    • /
    • 2017
  • The purpose of this research is to propose an efficient loop line operation plan for customer transportation in a new theme park. Based on the expected customer arrivals, customer loading/unloading methods, and scheduled/non-scheduled departure schemes, movement time between stations etc., we have performed indepth analyses and derived the best optimal policy. Our results show that, over all, the operation with separate loading/unloading doors and scheduled departure is preferred to the other options. We then derived the optimal number of trains and cars meeting minimal customer unsatisfaction with low cost for each season.

Reliability estimation and optimal capacity and allocation by distributed generation installation (분산전원 설치에 따른 신뢰도 평가와 최적용량과 위치결정)

  • Park, Jung-Hoon;Shin, Dong-Suk;Kim, Jin-O;Kim, Kyu-Ho;Cho, Jong-Man
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.151-153
    • /
    • 2003
  • This paper proposes determining a optimal number, size and allocation of DGs(Distributed Generations) needed to minimize operation cost of distribution system, obtains economic benefit in operation planning of DG and improves system reliability. System reliability is assessed whether DG install and reliability cost consider. DG optimal allocations are determined to minimize total cost with power buying cost, operation cost of DG, loss cost and outage cost using GA(Genetic Algorithm). And it was determined installed load-point and order.

  • PDF

A Development of Optimized Train Scheduling Program (열차배열의 최적화 프로그램 개발)

  • Ryu, Sang-Hwan;Kim, Eui-Il;Kim, Kil-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.513-515
    • /
    • 1995
  • A computer aided process is inevitable for the optimization of train operation planning. Developing of train diagrams is very important for the train operation planning. In this paper, the user friendly program related to the train scheduling that can be used for the basic data on developing of train diagram is introduced. It can also provide basic data for other train operation plannings, such as Timetabling, Crew Operation Scheduling, etc. It provides the planner with data moving, data changing and zooming functions, and it can assist the user easily produces their optimal solution. All this operations are performed interactively through graphic windows.

  • PDF

Building a mathematics model for lane-change technology of autonomous vehicles

  • Phuong, Pham Anh;Phap, Huynh Cong;Tho, Quach Hai
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.641-653
    • /
    • 2022
  • In the process of autonomous vehicle motion planning and to create comfort for vehicle occupants, factors that must be considered are the vehicle's safety features and the road's slipperiness and smoothness. In this paper, we build a mathematical model based on the combination of a genetic algorithm and a neural network to offer lane-change solutions of autonomous vehicles, focusing on human vehicle control skills. Traditional moving planning methods often use vehicle kinematic and dynamic constraints when creating lane-change trajectories for autonomous vehicles. When comparing this generated trajectory with a man-generated moving trajectory, however, there is in fact a significant difference. Therefore, to draw the optimal factors from the actual driver's lane-change operations, the solution in this paper builds the training data set for the moving planning process with lane change operation by humans with optimal elements. The simulation results are performed in a MATLAB simulation environment to demonstrate that the proposed solution operates effectively with optimal points such as operator maneuvers and improved comfort for passengers as well as creating a smooth and slippery lane-change trajectory.

Optimal Planning for Dispersed Generating Sources in Distribution Systems(II) (배전계통에 있어서 열병합 분산형전원의 최적 도입계획에 관한 연구 (II))

  • Shim, Hun;Rho, Dae-Seok;Choi, Jae-Suk;Cha, Jun-Min
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.67-69
    • /
    • 2000
  • This paper deals with a method for determining an optimal operation strategy of dispersed generating sources. For effective utilization of dispersed generating sources, it is indispensable to consider their thermal merits in addition to electric power. And then the optimal operation of these sources can be determined easily by the principle of equal incremental fuel cost. This paper presents an priority method to decide the optimal location of those sources in power systems about the whole year. The validity of the proposed algorithms are demonstrated using a model system.

  • PDF

Optimal design of multi-former die set by the techniques of horizontal split

  • Kim Chul;Park Chul-Woo;Chang Young-June
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.3-8
    • /
    • 2006
  • This paper deals with an automated computer-aided process planning and die design system by which designer can determine operation sequences even if they have a little experience in process planning and die design for axisymmetric products. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. The system can provide a flexible process based on either the reduction in the number of forming sequences by combining the possible two processes in sequence, or the reduction of deviation of the distribution on the level of the required forming loads by controlling the forming ratios. Especially in die design module optimal design technique and horizontal split of die insert were investigated for determining appropriate dimensions of components of multi-former die set. Results obtained, using the modules, enable the design and manufacture of a die set for a multi-former to be more efficiently performed.

Fleet Sizing and Vehicle Routing for Static Freight Container Transportation (정적 환경의 화물컨테이너 운반 시스템에서의 차량 대수 및 경로 계획)

  • Koo, Pyung-Hoi;Jang, Dong-Won;Lee, Woon-Seek
    • IE interfaces
    • /
    • v.16 no.2
    • /
    • pp.174-184
    • /
    • 2003
  • This paper addresses a fleet operation planning problem for a static freight container transportation system in which all the transportation requirements are predetermined at the beginning of a planning horizon. In the transportation system under consideration, a number of loaded containers are to be moved between container storage yards. An optimal fleet planning model is used to determine the minimum number of vehicles required. Based on the results from the optimal model, a tabu-search based algorithm is presented to perform a given transportation requirements with the least number of vehicles. The performance of the new procedure is evaluated through some experiments in comparison with two existing methods, and the it is found that our procedure produces good-quality solutions.

A Study on the Body Welding Operation Scheduling Considering the Assembly Line's Input Sequence in Construction Equipment Manufacturing (건설기계 조립 라인 투입 순서를 고려한 제관 공정 생산 스케줄링에 관한 연구)

  • Kim, Ki-Dong;Choi, Ho-Sik
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.69-76
    • /
    • 2007
  • The body of an excavator, one sort of the construction equipment, consists of mainframe part, track frame part, boom part and arm part. The all parts are manufactured in the body welding operation. The scheduling in the body welding operation of a construction equipment manufacturing is to take all the various constraints into consideration. The offset time, due date, daily capacity of operations, daily jig's capacity, precedence relation, outsourcing, alternative resource and all of the shop floor environment should be considered. An APS(Advanced Planning & Scheduling) system is a proper and efficient system in such circumstance. In this paper, we present an APS system, the optimal scheduling system for the construction equipment manufacturing specifically for the body welding operation, using ILOG Solver/Scheduler. ILOG Solver/Scheduler is a general purposed commercial software which supports to find a feasible or optimal solution using object oriented technique and constraints satisfaction programming, given constraints and objectives.

  • PDF