• Title/Summary/Keyword: optimal matrix

Search Result 935, Processing Time 0.025 seconds

Performance Analysis of Quaternion-based Least-squares Methods for GPS Attitude Estimation (GPS 자세각 추정을 위한 쿼터니언 기반 최소자승기법의 성능평가)

  • Won, Jong-Hoon;Kim, Hyung-Cheol;Ko, Sun-Jun;Lee, Ja-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2092-2095
    • /
    • 2001
  • In this paper, the performance of a new alternative form of three-axis attitude estimation algorithm for a rigid body is evaluated via simulation for the situation where the observed vectors are the estimated baselines of a GPS antenna array. This method is derived based on a simple iterative nonlinear least-squares with four elements of quaternion parameter. The representation of quaternion parameters for three-axis attitude of a rigid body is free from singularity problem. The performance of the proposed algorithm is compared with other eight existing methods, such as, Transformation Method (TM), Vector Observation Method (VOM), TRIAD algorithm, two versions of QUaternion ESTimator (QUEST), Singular Value Decomposition (SVD) method, Fast Optimal Attitude Matrix (FOAM), Slower Optimal Matrix Algorithm (SOMA).

  • PDF

Multi-criteria shape design of crane-hook taking account of estimated load condition

  • Muromaki, Takao;Hanahara, Kazuyuki;Tada, Yukio
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.707-725
    • /
    • 2014
  • In order to improve the crane-hook's performance and service life, we formulate a multi-criteria shape design problem considering practical conditions. The structural weight, the displacement at specified points and the induced matrix norm of stiffness matrix are adopted as the evaluation items to be minimized. The heights and widths of cross-section are chosen as the design variables. The design variables are expressed in terms of shape functions based on the Gaussian function. For this multi-objective optimization problem with three items, we utilize a multi-objective evolutionary algorithm, that is, the multi-objective Particle Swarm Optimization (MOPSO). As a common feature of obtained solutions, the side views are tapered shapes similar to those of actual crane-hook designs. The evaluation item values of the obtained designs demonstrate importance of the present optimization as well as the feasibility of the proposed optimal design approach.

Analysis of a nonuniform guiding structure by the adaptive finite-difference and singular value decomposition methods

  • Abdolshakoor Tamandani;Mohammad G. H. Alijani
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.704-712
    • /
    • 2023
  • This paper presents a flexible finite-difference technique for analyzing the nonuniform guiding structures. Because the voltage and current variations along the nonuniform structure differ for each segment, this work considers the adaptable discretization steps. This technique increases the accuracy of the final response. Moreover, by applying the singular value decomposition and discarding the nonprincipal singular values, an optimal lower rank approximation of the discretization matrix is obtained. The computational cost of the introduced method is significantly reduced using the optimal discretization matrix. Also, the proposed method can be extended to the nonuniform waveguides. The technique is verified by analyzing several practical transmission lines and waveguides with nonuniform profiles.

A matrix displacement formulation for minimum weight design of frames

  • Orakdogen, Engin
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.473-489
    • /
    • 2002
  • A static linear programming formulation for minimum weight design of frames that is based on a matrix displacement method is presented in this paper. According to elementary theory of plasticity, minimum weight design of frames can be carried out by using only the equilibrium equations, because the system is statically determinate when at an incipient collapse state. In the present formulation, a statically determinate released frame is defined by introducing hinges into the real frame and the bending moments in yield constraints are expressed in terms of unit hinge rotations and the external loads respectively, by utilizing the matrix displacement method. Conventional Simplex algorithm with some modifications is utilized for the solution of linear programming problem. As the formulation is based on matrix displacement method, it may be easily adopted to the weight optimization of frames with displacement and deformation limitations. Four illustrative examples are also given for comparing the results to those obtained in previous studies.

Optimal Cognitive System Modeling Using the Stimulus-Response Matrix (자극-반응 행렬을 이용한 인지 시스템 최적화 모델)

  • Choe, Gyeong-Hyeon;Park, Min-Yong;Im, Eun-Yeong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.11-22
    • /
    • 2000
  • In this research report, we are presenting several optimization models for cognitive systems by using stimulus-response matrix (S-R Matrix). Stimulus-response matrices are widely used for tabulating results from various experiments and cognition systems design in which the recognition and confusability of stimuli. This paper is relevant to analyze the optimization/mathematical programming models. The weakness and restrictions of the existing models are resolved by generalization considering average confusion of each subset of stimuli. Also, clustering strategies are used in the extended model to obtain centers of cluster in terms of minimal confusion as well as the character of each cluster.

  • PDF

On Line LS-SVM for Classification

  • Kim, Daehak;Oh, KwangSik;Shim, Jooyong
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.595-601
    • /
    • 2003
  • In this paper we propose an on line training method for classification based on least squares support vector machine. Proposed method enables the computation cost to be reduced and the training to be peformed incrementally, With the incremental formulation of an inverse matrix in optimization problem, current information and new input data can be used for building the new inverse matrix for the estimation of the optimal bias and Lagrange multipliers, so the large scale matrix inversion operation can be avoided. Numerical examples are included which indicate the performance of proposed algorithm.

Matrix Game with Z-numbers

  • Bandyopadhyay, Sibasis;Raha, Swapan;Nayak, Prasun Kumar
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.60-71
    • /
    • 2015
  • In this paper, a matrix game is considered in which the elements are represented as Z-numbers. The objective is to formalize the human capability for solving decision-making problems in uncertain situations. A ranking method of Z-numbers is proposed and used to define pure and mixed strategies. These strategies are then applied to find the optimal solution to the game problem with an induced pay off matrix using a min max, max min algorithm and the multi-section technique. Numerical examples are given in support of the proposed method.

Incremental Multi-classification by Least Squares Support Vector Machine

  • Oh, Kwang-Sik;Shim, Joo-Yong;Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.965-974
    • /
    • 2003
  • In this paper we propose an incremental classification of multi-class data set by LS-SVM. By encoding the output variable in the training data set appropriately, we obtain a new specific output vectors for the training data sets. Then, online LS-SVM is applied on each newly encoded output vectors. Proposed method will enable the computation cost to be reduced and the training to be performed incrementally. With the incremental formulation of an inverse matrix, the current information and new input data are used for building another new inverse matrix for the estimation of the optimal bias and lagrange multipliers. Computational difficulties of large scale matrix inversion can be avoided. Performance of proposed method are shown via numerical studies and compared with artificial neural network.

  • PDF

Computer Aided Optimal Circuit Design (전자계산기에 의한 최적회로설계 방식 연구)

  • 김덕진;김선영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.14 no.4
    • /
    • pp.22-31
    • /
    • 1977
  • A general equation by which the Hessian matrix of an error function can be determined directly, has been derived. It was verified to be useful in optimization processes that include the Hessian matrix. A few design examples had shown that this method had accelerated the processes of finding the minimums. The advantage of this technique is the possibility of optimizing functions that composed of both the phases and magnitudes.

  • PDF

PERFORMANCE COMPARISON OF PRECONDITIONED ITERATIVE METHODS WITH DIRECT PRECONDITIONERS

  • Yun, Jae Heon;Lim, Hyo Jin;Kim, Kyoum Sun
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.389-403
    • /
    • 2014
  • In this paper, we first provide comparison results of preconditioned AOR methods with direct preconditioners $I+{\beta}L$, $I+{\beta}U$ and $I+{\beta}(L+U)$ for solving a linear system whose coefficient matrix is a large sparse irreducible L-matrix, where ${\beta}$ > 0. Next we propose how to find a near optimal parameter ${\beta}$ for which Krylov subspace method with these direct preconditioners performs nearly best. Lastly numerical experiments are provided to compare the performance of preconditioned iterative methods and to illustrate the theoretical results.