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Abstract

In this paper, a matrix game is considered in which the elements are represented as Z-numbers.
The objective is to formalize the human capability for solving decision-making problems in
uncertain situations. A ranking method of Z-numbers is proposed and used to define pure
and mixed strategies. These strategies are then applied to find the optimal solution to the
game problem with an induced pay off matrix using a min max, max min algorithm and the
multi-section technique. Numerical examples are given in support of the proposed method.
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1. Introduction

In the modern world, one is faced with innumerable problems arising from existing socio-
economic conditions that involve varying degrees of imprecision and uncertainty. We often
need to take decisions in conflicting situations based on uncertain, ambiguous, or incomplete
information. Human beings have a tremendous capability to form rational decisions based on
such imprecise information. It is hard to formalize these human capabilities. This challenge
has motivated us to consider a game theoretic model under conditions of uncertainty.

Game theory problems under uncertainty have been considered by many researchers, e.g.,
Nayak and Pal [1–3], Narayanan [4], and Nishizaki [5]. Narayanan [4] solved a 2× 2 interval
game using the probability and possibility approach but no certain distribution function has
been used. Nayak and Pal [3] established a method of solution of a matrix game using
interval numbers. But the solution has been considered under a certain condition which has
been obviated by the authors in their work [6]. Biswas and Bose [7] constructed a quadratic
programming model under fuzzily described system constraints on the basis of degree of
satisfaction. Veeramani and Duraisamy [8] suggested a new approach for solving fuzzy
linear programming problem using the concept of nearest symmetric triangular fuzzy number
approximations with preserve expected interval. But this approach is not efficient when a
primal basic feasible solution is not in hand. Ebrahimnejad and Nasseri [9] overcame this
shortcoming using a new algorithm. Iskander [10] proposed a new approach for solving
stochastic fuzzy linear programming problem using triangular fuzzy probabilities. Apart
from this Kumar and Kar [11], Marbini and Tavana [12], Ebrahemnijad and Nasseri [13]
have contributed substantially to the application of fuzzy mathematics in operations research.
However, there are many shortcomings in the above-mentioned techniques for solving game
problems in uncertain situations. These can be categorized as follows:
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• We consider the theory of fuzzy sets to address the un-
certainty that occurs in industrial problems or machine
learning. It is unlikely that we always have complete
knowledge about the domain set. For example, when we
try to address an object as ‘beautiful,’ we may not have
complete knowledge about the parameters by which the
beauty of an object can be explained, or the parameters,
if assumed, may not match other people’s choices, i.e.,
they may not be unique. However, the reliability of the
information must be taken into consideration, and this
aspect is lacking in the fuzzy set description.

• We use soft set theory or rough set theory to describe
uncertain situations. However, we may not know the
complete set of parameters E in the case of a soft set, i.e.,
there is an issue regarding the reliability of the informa-
tion concerned. In the rough set description, the lower
or upper approximation or boundary region may not al-
ways be described, because knowledge or information
about the equivalence relation R or domain U are only
approximations or assumptions, and may not be known
in advance. Additionally, it is not guaranteed that the de-
sired optimal solution will be compatible with industrial
applications.

• Different optimization techniques give rise to different
optimal results, and we can only compare these results
with those obtained by existing techniques. We cannot,
however, ensure that a technique gives an actual optimal
solution that will be universally accepted. The main rea-
son behind this is that we cannot address the uncertainty
properly, and thus use a number of assumptions.

Thus, we need to develop the mathematical structures that
provide a generalization of uncertain situations and that con-
sider the reliability of available information. Zadeh [14] has
made an attempt towards such a generalization by proposing
Z-numbers. A Z-number is an ordered pair (A,B) in which
A represents the restriction on a real-valued uncertain variable
X and B is the measure of sureness, reliability, or certainty
about A. However, the Z-number lacks informativeness when
first introduced. Their composition in a summation has been
defined [14], but the ranking or ordering of Z-numbers has
not yet been considered. In this paper, we introduce a rank-
ing of Z-numbers in the specific case where A represents a
restriction on the measure of the possibility distribution with
a Gaussian membership function, and B is a restriction on

the probability measure with a normal density function. This
ranking method is then used to solve a two-person zero-sum
game using min−max and max−min principles [6] and the
multi-section technique.

The remainder of this paper is organized as follows. In Sec-
tion 2, we discuss the concept of Z-numbers, before presenting
some basic definitions, notation, and comparisons related to
interval numbers in Section 3. In Section 4, a matrix game
with Z-numbers is proposed, and then Section 5 discusses the
interval approximation of Z-numbers, and introduces some
definitions, explanations, theorems about matrix games with
Z-numbers, pure and mixed strategies, and saddle points. In
section 6, a computational procedure is proposed along with
a min-max algorithm, max-min algorithm, and multi-section
technique. Section 7 presents an example in support of the pro-
posed method, along with discussions related to our algorithm
and the results of the numerical example. Brief conclusions are
given in Section 8.

2. Z-number

Let us consider a fuzzy set Ã defined over a universe of dis-
course X . How will we define Ã if X is not known in advance?
Again, if it is assumed that X is known with certain parameters,
then what is the reliability of such an information? We may say
that we can define Ã as type−2 fuzzy set where, X is a type−1

fuzzy set. In that case, X is also defined over some domain set
X. However, what will happen if X is also not known? In Z-
number representation, we may always construct X with some
arbitrary element x ∈ X with some probability or possibility p.
In that case, we can always associate a statement x with some
statement G as

x is Gisλ

where, λ acts as a fuzzy quantifier and we consider it as proba-
bility induced by some possibility membership and we write

prob(x is G) = λ (fuzzy granularity [15]).

This situation, inspires us to define a Z-number formally. A
Z-number Z is defined [14] as an ordered pair (A,B) where A
and B are two fuzzy numbers and a Z-valuation is defined as

Z(A,B) = (X;AX , B), µAX .pX is B (1)

where, X is a real-valued uncertain variable, A is a restriction
on the real values of the uncertain variable X and B is the
reliability or certainty of A. Here, we consider X to be a
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random variable, AX to be a restriction on the measure of a
possibility distribution with membership function µAX and pX
is the restriction on probability distribution(density) function of
X . The scalar product µAX .pX gives the probability measure,
PAX of AX and it is given as

PAX = µAX .pX =

∫
R

µAX (u).pX(u)du (2)

Here, we recall thatB is a restriction on the probability measure
of A and it is not a restriction on the probability of A. Here, we
attempt to ordering of the Z-numbers. For that purpose, here we
consider the membership function as gaussian membership func-
tion. The reason behind taking such a function as membership
function is that it is non-linear in nature and assume the situation
which occurs generally in industrial applications. Unless other-
wise stated by Z-number we here understand Z-valuation. For
the sake of computation here we will consider a Z-number as
(X;AX , PAX ) or (X;µAX , PAX ) or(X; 〈c, σ〉, PAX ) where c
and σ are parameters of the Gaussian membership function.
Here we may consider some examples like (Population of India,
about 1200 million, very likely ),(degree of satisfaction, very
high, not sure) which are considered as Z-number.

To consider an arithmetic operation, letZX = (X;µAX , PAX )

and ZY = (Y ;µAY , PAY ) be two Z-numbers. Using the exten-
sion principle as described by [14], we obtain

ZX + ZY = ZX+Y

where ZX+Y = (X + Y ;µAX+AY , PAX+AY )

where µAX+AY (v) = supu(µAX (u)∧µAY (v−u)),∧ = min

pAX+AY (v) =

∫
R

pAX (u)pAy (v − u)du

3. Interval-number

Let us consider that < represents the set of all real numbers.
We define an interval, Moore [16], as

a = [aL, aR] = {x : aL ≤ x ≤ aR, aL ∈ <, aR ∈ <}, (3)

where aL and aR are said to be the lower and upper limits of
the interval a, respectively. If aL = aR then a = [aL, aR] is
reduced to a real number a, where a = aL = aR . Corresponding
interval arithmetic is given by 3.

a+ b = [aL + bL, aR + bR];

a+ b = 〈m(a) +m(b), w(a) + w(b)〉.
(4)

ca = [caL, caR]; if c > 0

= [caR, caL]; if c < 0
(5)

a− b = [aL − bR, aR − bL]. (6)

a.b = [min{aL.bL, aL.bR, aR.bL, aR.bR},

max{aL.bL, aL.bR, aR.bL, aR.bR}] .
(7)

For, 0 6∈ b

a/b =

[
min

{
aL
bL
,
aL
bR
,
aR
bL
,
aR
bR

}
,

max

{
aL
bL
,
aL
bR
,
aR
bL
,
aR
bR

}]
.

(8)

The order relation of interval numbers is discussed in several
literature [16, 17]. Recently Chakrabortty et al. [18] proposed a
revised definition of order relations between interval costs(or
times) for minimization problems and interval profits for maxi-
mization problems for optimistic and pessimistic decision mak-
ing. Let us suppose, the intervals a and b represent the uncertain
interval costs (or times) or profits in center-radius form.

For minimization problems the order relation ‘ ≤omin’ be-
tween the intervals a and b is

(i) a ≤omin b iff aL ≤ bL,

(ii) a ≤omin b iff a ≤omin b and a 6= b.

This implies that a is superior to b and a is accepted. This
order relation is not symmetric.

In pessimistic decision making, the decision maker expects
the minimum cost/time for minimization problems according to
the principle ‘Less uncertainty is better than more uncertainty’.

For minimization problems, the order relation ‘ <pmin’ be-
tween the intervals a = [aL, aR] = 〈m(a), w(a)〉 and b =

[bL, bR] = 〈m(b), w(b)〉 is

(i) a <pmin b iff m(a) < m(b) , for type-I and type-II
intervals,

(ii) a <pmin b iff m(a) ≤ m(b) and w(a) < w(b), for
type-III intervals.
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B1 B2 · · · Bn

Ĝ =

A1

A2

...
Am


(X11;µAX11

, PAX11
) (X12;µAX12

, PAX12
) · · · (X1n;µAX1n

, PAX1n
)

(X21;µAX21
, PAX21

) (X22;µAX22
, PAX22

) · · · (X2n;µAX2n
, PAX2n

)
...

...
...

(Xm1;µAXm1
, PAXm1

) (Xm2;µAXm2
, PAXm2

) · · · (Xmn;µAXmn , PAXmn )


which is said to be matrix game Ĝ with Z-numbers.

In this paper, arithmetic operations on interval [a, b] and their
ranking as proposed in [6] serves as a level−1 computation [14]
and the same is used in ranking of Z-numbers. Gregorzewski
[19] proposed a method for interval approximation of fuzzy
number. Here, in same way, we will approximate a Gaussian
fuzzy number to an interval number. For that, let us consider
a Gaussian fuzzy number 〈x, µ(x; c, σ)|x ∈ X〉 where the
membership function is given as

µ(x; c, σ) = e−(x−c)
2/2σ2

, −∞ < x <∞. (9)

Now, we define an α-cut set Aα as Aα = {x : µ(x; c, σ) ≥ α}.
Then,

µ(x; c, σ) ≥ α⇒ e−(x−c)
2/2σ2

≥ α

⇒ c− σ
√

2ln(1/α) ≤ x ≤ c+ σ
√

2ln(1/α) (10)

and let us consider that ALα = c− σ
√

2ln(1/α) and ARα =

c+ σ
√

2ln(1/α). Let [a, b] be the corresponding interval ap-
proximation. Then

a =

∫ 1

0

ALαdα = c− 4
√

2σ;

b =

∫ 1

0

ARαdα = c+ 4
√

2σ.

Therefore, if Z = (X;AX , PAX ) be a Z-number with Gaus-
sian membership function µ(x; c, σ) then the corresponding
interval approximation is [c− 4

√
2σ, c+ 4

√
2σ] and

PAXij = µAXij .pXij =

∫
R

µAXij (u).pXij (u)du. (11)

Here, we get the probability density function pXijas the normal
density function N(cij , σ). Hence,

pXij =
1

σ
√

2π
exp−1/2(

xij−cij
σ )2 ' N(cij , σ) (12)

where σ = max
i,j

σij , i = 1, 2, · · ·m, j = 1, 2, · · ·n. Then, we

obtain from Eq. (9) that

PAXij =

∞∫
−∞

1

σ
√

2π
exp−1/2(

xij−cij
σ )2 exp

−1/2(
xij−cij
σij

)2

dxij

=
2

σij
√
π( 1

σ2
ij

+ 1
σ2 )

. (13)

Now, let us consider two Z-numbers Z1, Z2 and corresponding
interval approximations as [c1−4

√
2σ1, c1 +4

√
2σ1] and [c2−

4
√

2σ2, c2 +4
√

2σ2]. Using the interval arithmetic, we propose
the ranking of Z-numbers as

Z1 < Z2 iff c1 − 4
√

2σ1 < c2 − 4
√

2σ2 and c2 + 4
√

2σ2 < c1 + 4
√

2σ1;

Z1 < Z2 iff c1 < c2;

Z1 < Z2 iff σ1 < σ2 when c1 = c2 for optimistic decision maker;
Z1 < Z2 iff σ1 > σ2 when c1 = c2 for pessimistic decision maker;
Z1 = Z2 iff c1 = c2 and σ1 = σ2.

(14)
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4. Solution of Matrix Game

Suppose, the pay-off for player A in a matrix game with Z-
number be represented as (Xij ;AXij , PAXij ). Then, the corre-

sponding interval approximation will be given by (Xij ; [cij −
4
√

2σij , cij + 4
√

2σij ], PAxij ). The pay-off matrix with el-
ements as interval approximation of Z-number can then be
represented as

B1 B2 · · · Bn

Ĝ′ =

A1

A2

...
Am


(X11; I11, PAx11 ) (X12; I12, PAx12 ) · · · (X1n; I1n, PAx1n )

(X21; I21, PAx21 ) (X22; I22, PAx22 ) · · · (X2n; I2n, PAx2n )
...

...
...

(Xm1; Im1, PAxm1
) (Xm2; Im2, PAxm2

) · · · (Xmn; Imn, PAxmn )

 (15)

where Iij = [cij − 4
√

2σij , cij + 4
√

2σij ], i = 1, 2 · · ·m, j = 1, 2, · · ·n and

PAXij = µAXij .pXij =

∫
R

µAXij (u).pXij (u)du. (16)

Theorem 4.1. If Z1(X1;AX1
, PAX1

) ≤ Z2(X2;AX2
, PAX2

)

then PAX1
≥ PAX2

for optimistic decision maker and PAX1
≤

PAX2
for pessimistic decision maker.

Proof. From the expression in (13) we see that PAXij depend
only on σij and not on cij . Using this fact and combining the
relation in (14) we can easily construct the proof of the theorem.

Notes: Here it should be noted that for pessimistic decision
maker the degree of certainty PAX is lesser iff the membership
value or the interval approximation is lesser and for optimistic
decision maker the degree of certainty does not matter at all, it
only gives the degree of reliability of the information.

4.1 Pure Strategy

In the context of Z-number, a pure strategy may be considered
as a decision making rule in which one particular course of
action is selected with some degree of reliability or certainty for
the pay off considered. Actually, Z-number gives higher level
of generality compared to interval numbers where length of the
interval actually measures the certainty. For lack of informa-
tiveness of Z-number, we develop the concept of pure strategy
in the domain of interval numbers with parallel computation.
For matrix game with Z-number, we define the min max and

max min as

max min =
∨
i

{
∧
j

(Xij ;AXij , PAXij )}

min max =
∧
j

{
∨
i

(Xij ;AXij , PXij )}.
(17)

where ‘∨′ and ‘∧′ the max and min operators for two Z-number
in the domain of Z-numbers Z respectively. In accordance with
ranking of Z-numbers in (14), for games such as Ĝ with pure
strategy, we define the concept of saddle point solution.

Definition 4.1. (Saddle Point) The concept of saddle point in
classical form was proposed by Von Neumann and Morgenstern
[20]. The (k, r)th position of the pay-off matrix Ĝ with Z-
numbers is said to be a saddle point of the matrix game Ĝ, if
and only if,

(Xkr;AXkr , PXkr ) =
∨
i

{∧
j

(Xij ;AXij , PXij )
}

=
∧
j

{∨
i

(Xij ;AXij , PXij )}
}
.

(18)

The position (k, r) is said to be a saddle point, the entry
itself [akr, bkr] represents the value of the game (denoted by
V̂ ) and the pair of pure strategies leading to it are optimal pure
strategies. Now we have to confirm that the relation as defined
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here for the saddle point solution actually exists for the matrix
game with Z-numbers. For that purpose we must consider the
following theorems.

Theorem 4.2. Let G̃ = (Xij ;AXij , PXij ); i = 1, 2, ...,m; j =

1, 2, ..., n be the m × n pay-off matrix for a two-person ma-
trix game Γ with Z-numbers. Suppose

∨
i

{
∧
j

(Xij ;AXij , PXij )}

and
∧
j

{
∨
i

(Xij ;AXij , PXij )} both exist. Then∨
i

{
∧
j

(Xij ;AXij , PXij )} ≤
∧
j

{
∨
i

(Xij ;AXij , PXij )}.

Proof. For some fixed i, we have, by using the order relation
on Z,

(Xij ;AXij , PXij ) ≤
∨
i

(Xij ;AXij , PXij )}; ∀i (19)

and
∧
j

(Xij ;AXij , PXij ) ≤ (Xij ;AXij , PXij ); ∀j. (20)

From (19) and (20) we have,∧
j

(Xij ;AXij , PXij ) ≤
∨
i

(Xij ;AXij , PXij ).

Here, we see that
∧
j

(Xij ;AXij , PXij ) is independent of j,

since (Xij ;AXij , PXij ) has obtained minimum value for some
fixed value of j. Hence we write∧

j

(Xij ;AXij , PXij ) ≤
∧
j

{
∨
i

(Xij ;AXij , PXij )}. (21)

Again, the right-hand side of (21) is independent of i, hence,
we obtain∨
i

{
∧
j

(Xij ;AXij , PXij )} ≤
∧
j

{
∨
i

(Xij ;AXij , PXij )}.

Hence the theorem.

Theorem 4.3. Let both∨
i

{
∧
j

(Xij ;AXij , PXij )}

and ∧
j

{
∨
i

(Xij ;AXij , PXij )}

exist. Then a necessary and sufficient condition that (Xij ;AXij ,
PXij ) will be a saddle point at i = k, j = r is∨

i

{
∧
j

(Xij ;AXij , PAXij )} ≥
∧
j

{
∨
i

(Xij ;AXij , PAXij )}

and
V = (Xkr;AXkr , PAXkr )

=
∨
i

{
∧
j

(Xij ;AXij , PAXij )}

=
∧
j

{
∨
i

(Xij ;AXij , PAXij )}.

Proof. Condition is necessary: Let∨
i

{
∧
j

(Xij ;AXij , PAXij )} =
∧
j

{
∨
i

(Xij ;AXij , PAXij )}.

Let i = k make
∧
j

(Xij ;AXij , PAXij ) a maximum and let

j = r make
∨
i

(Xij ;AXij , PAXij ) a minimum. Then, we write

∧
j

{(Xkj ;AXkj , PAXkj )} =
∨
i

{
∧
j

(Xij ;AXij , PAXij )};

∨
i

{(Xir;AXir , PAXir )} =
∧
j

{
∨
i

(Xij ;AXij , PAXij )}.

As,
∨
i

{
∧
j

(Xij ;AXij , PAXij )} =
∧
j

{
∨
i

(Xij ;AXij , PAXij )},

we have
∧
j

(Xij ;AXij , PAXij ) =
∨
i

(Xij ;AXij , PAXij ). Also,

using the order relation over Z-numbers in Z,∧
j

{(Xkj ;AXkj , PAXkj )} ≤ (Xkr;AXkr , PAXkr );

∨
i

{(Xir;AXir , PAXir )} ≤ (Xkr;AXkr , PAXkr ).

This is one of the conditions for (Xij ;AXij , PAXij ) to have
a saddle point. The other condition can similarly be deduced.

Condition is sufficient: Let (Xkr;AXkr , PAXkr ) be the sad-
dle point of the pay-off matrix G̃, then for i = k, j = r we
have, by definition of saddle point

(Xir;AXir , PAXir ) ≤ (Xkr;AXkr , PAXkr );

(Xkr;AXkr , PAXkr ) ≤ (Xkj ;AXkj , PAXkj )

or, ∨
i

(Xir;AXir , PAXir ) ≤ (Xkr;AXkr , PAXkr );

(Xkr;AXkr , PAXkr ) ≤
∧
j

(Xkj ;AXkj , PAXkj )

or, ∨
i

(Xir;AXir , PAXir ) ≤ (Xkr;AXkr , PAXkr )

≤
∧
j

(Xkj ;AXkj , PAXkj )
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or,∧
j

{
∨
i

(Xir;AXir , PAXir )} ≤ (Xkr;AXkr , PAXkr )

≤
∨
i

{
∧
j

{(Xkj ;AXkj , PAXkj )}}

as ∧
j

{(Xkj ;AXkj , PAXkj )} ≤ (Xkr;AXkr , PAXkr )

and ∨
i

{(Xir;AXir , PAXir )} ≥ (Xkr;AXkr , PAXkr ).

Using the above Theorem 4.2 we have,∨
i

{
∧
j

(Xij ;AXij , PAXij )} = (Xkr;AXkr , PAXkr )

=
∧
j

{
∨
i

(Xij ;AXij , PAXij )}.

Hence the necessary and sufficient condition for the existence
of a saddle point is proved.

Example 4.1. Let us consider the 2 × 2 matrix game with
Z-number having the pay-off matrix as in the following:

B1 B2

Ĝ2 =
A1

A2

(
(X11; 〈3, 0.5〉, 0.1) (X12; 〈3.5, 1〉, 0.8)

(X21; 〈4, 1〉, 0.8) (X22; 〈2.5, 0.5〉, 0.1)

)
.

It can be easily verified that
∨
i

{
∧
j

(Xij ;AXij , PAXij )} =

(X11; 〈3, 0.5〉, 0.1) =
∧
j

{
∨
i

(Xij ;AXij , PAXij )}. Therefore, the

matrix game with Z-number Ĝ2 has a saddle point at (1, 1) and
the optimal strategies for players A and B are the pure strate-
gies A1 and B1, respectively. The value of the matrix game Ĝ2

is V̂2 = (X11; 〈3, 0.5〉, 0.1).

4.2 Mixed Strategy

In a situation where the saddle point of a pay off matrix does
not exist we allow mixed strategies to get a solution. In mixed
strategies, the probability with which a player chooses a par-
ticular strategy is considered. In the context of Z-number,
we can say that in mixed strategy game we find an expected
pay off with some reliability or certainty of the pay off ob-
tained. Suppose<m+ and<n+ be them and n dimensional vector

spaces, respectively. We denote x = (x1, x2, · · · , xm)T and
y = (y1, y2, ..., yn)T , respectively, where the symbol ‘T ′ de-
notes the transpose of a vector. The strategy spaces for players
A and B are denoted as

SA =
{

(x1, x2, · · · , xm) ∈ <m+ :

xi ∈ [0, 1]; i = 1, 2, ...,m and
m∑
i=1

xi = 1

}
SB =

{
(y1, y2, ..., yn) ∈ <n+ :

yi ∈ [0, 1]; i = 1, 2, ..., n and
n∑
i=1

yi = 1

}
,

respectively. Vectors x ∈ SA,y ∈ SB are called mixed strate-
gies of players A and B, respectively. Now, we should remem-
ber that Z-number is a higher(level 3) level of generality [14]
and all the operational rules like multiplication, division are not
known. In that case, it is better idea to find the mixed strategy
solution using the interval approximation. Interval is a particu-
lar case of a Z-number and it is level−1 domain of computation.
Now, the question may arise: Does an optimal mixed strategy
solution with interval numbers actually correspond to an opti-
mal mixed strategy solution with Z-numbers? To get an answer
to this question we must consider the following theorem where,
a Z-number is modelled with a gaussian membership function
and normal probability density function.

Theorem 4.4. An optimal solution of the matrix game with
pay-off elements as interval approximation of some Z-number
corresponds to the optimal solution of the matrix game with
pay-off elements the concerned Z-number.

Proof. Let us consider a maximization problem where, the
elements of the pay off matrix are interval approximation of
Z-numbers. Let us construct an interval approximation function
φ : Z → I(<). Now, the author’s [19] approach of interval
approximation assures that the set of such functions is non-
empty. We first establish that φ is a bijective mapping. Let
Z1, Z2 ∈ Z. We can then find c1, c2, σ1, σ2 ∈ < such that

φ(Z1) = [c1 − 4
√

2σ1, c1 + 4
√

2σ1]

φ(Z2) = [c2 − 4
√

2σ2, c2 + 4
√

2σ2].

Using interval arithmetic, we can easily verify that φ(Z1) =

φ(Z2)⇒ c1 = c2 and σ1 = σ2. Hence Z1 = Z2. Therefore, φ
is injective.

Similarly, using interval arithmetic, we can easily verify that
for every interval c1, c2, σ1, σ2 ∈ < we can find Z1, Z2 ∈ Z,
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the set of solutions withZ-numbers, assuring that φ is surjective.
Hence, φ is bijective. This property assures that every solution
in I(<) corresponds exactly to one solution in Z. Let I∗ be the
optimal solution of the maximization problem. Then, for every
solution I , we must have,

I ≤ I∗. (22)

Now, let us construct I and I∗ as

I = [c− 4
√

2σ, c+ 4
√

2σ]

I∗ = [c∗ − 4
√

2σ∗, c∗ + 4
√

2σ∗].

Using equation (4.2) we have either

(i) c1− 4
√

2σ1 < c2− 4
√

2σ2 and c2 + 4
√

2σ2 <

c1 + 4
√

2σ1

(ii) c ≤ c∗ or

(iii) σ ≤ σ∗ when c = c∗.

Since, φ is bijective we find Z∗ such that Z ≤ Z∗∀Z ∈ Z.
Therefore, Z∗ is the optimal solution of the maximization prob-
lem modelled by Z-numbers. Similar approach can be made for
minimization problem. Hence the theorem is proved.

Note: We compute the inverse function φ−1 as φ−1([a, b]) =

(X; 〈a+b2 , b−a2 〉, PAXij ), a Z-number ∀[a, b] ∈ < which gives
the optimal solution of the matrix game with Z-number corre-
sponding to the optimal solution with interval number.

Definition 4.2. (Interval expected pay-off ): If the mixed
strategies x = (x1, x2, ..., xm) and y = (y1, y2, ..., yn) are
proposed by players A and B respectively, then the expected
pay-off of the player A by player B is defined by

Ẽ(x, y) = xT G̃y =

n∑
j=1

m∑
i=1

[aij , bij ]xiyj

=
(
x1 x2

)( [a11, b11] [a12, b12]

[a21, b21] [a22, b22]

)(
y1

y2

)
= [CL, CU ] (say)

(23)
where,

CL = (a11 + a22 − b12 − b21)x1y1 + (a12

− b22)x1 + (a21 − b22)y1 + a22

CU = (b11 + b22 − a12 − a21)x1y1 + (b12

− a22)x1 + (b21 − a22)y1 + b22

The composition rules on interval numbers [6] are used in
this definition (3) of expected pay-offs.

Definition 4.3. Suppose, η̂ = [ηL, ηR] and ψ̂ = [ψL, ψR] be
two intervals defined over <. Let us consider that there exist
strategies x∗ ∈ SA,y∗ ∈ SB . If, for any strategy x ∈ SA,y ∈
SB , (x∗,y∗, η̂, ψ̂) satisfies both

x∗T Ĝy≥̃η̂;∀y ∈ SB and xT Ĝy∗≤̃ψ̂;∀x ∈ SA, (24)

then, x ∈ SA,y ∈ SB , (x∗,y∗, η̂, ψ̂) is said to be a reasonable
solution to the interval matrix game Ĝ; η̂ and ψ̂ are called rea-
sonable values for players A and B, respectively; x∗ and y∗ are
called reasonable strategies for players A and B, respectively.

Let U and W be the sets of reasonable values for players A
and B, respectively.

Definition 4.4. Let us consider that there exist two reasonable
values η̂∗ ∈ U and ψ̂∗ ∈ W. If there do not exist reasonable
values η̂∗∗ ∈ U(η̂∗ 6= η̂∗∗) and ψ̂∗∗ ∈W (ψ̂∗ 6= ψ̂∗∗) such that
they satisfy both η̂∗≥̃η̂∗∗ and ψ̂∗≤̃ψ̂∗∗, then (x∗,y∗, η̂∗, ψ̂∗) is
said to be a solution of the interval matrix game Ĝ; x∗ is called
an optimal (or a maximin) strategy for playerA and y∗ is called
an optimal (or a minimax) strategy for player B; η̂∗ and ψ̂∗ are
called Player A’s gain-floor and B’s loss-celling, respectively.

5. Computational Methods

In this section, we discuss the computation procedure to find out
the solution to a matrix game with Z-number. We first transform
(through approximation) the pay off matrix with Z-numbers to
a pay off matrix with corresponding interval-number. We then
use multisection technique and min max algorithm [6] to solve
the matrix game. The multisection algorithm is formulated
according to the approach given in the work of Chakrabortty et
al. [18]. The concept of multisection is inspired by the concept
of multiple bi-section, where more than one bi-section is made
at a single iteration cycle. The basis of this method is the
comparison of intervals (as described in Section 3 of this paper)
according to the decision makers point of view.

Algorithm for multisection technique

Input: λ(number of divisions), y, l(lower bound)and u(upper
bound) of x.
Output: Probability x∗
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Step 1://calculation of step lengths//
calculate step length h =

(u− l)/λ
end for

Step 2://Division of concerned region into equal subregions //

Step 2.1: For j = 0 to λ− 1

Calculate l0 = l + j ∗ h

Step 2.2: //Call the function CL and CU //.
Section 3,

Calculate CL = lower value of the interval
number Ê(x, y),

obtained by as in Eq.
(23)

Calculate CU = upper value of the interval
number Ê(x, y),

obtained by as in Eq.
(23)

Step 2.3: For j1 = 0 to λ− 1

Calculate l1 = l + j1 ∗ h

Step 2.4: Calculate lmin = lower value of the
interval number Ê(x, y),

obtained by as in Eq.
(23) at l0

Calculate umin upper value of the interval
number Ê(x, y),

obtained by as in Eq.
(23) at l0
Calculate Cl = lower value of the interval number
Ê(x, y),

obtained by as in Eq.
(23) at l1

Calculate Cu = upper value of the interval
number Ê(x, y),

obtained by as in Eq.
(23) at l1

Step 2.5: Applying required order relation (defined
in Section 3)

between any two interval numbers
[CL, CL] and [lmin, umin]

choose the optimal interval number.
end j1 loop

Step 2.6: Choose the subregion Eopt among Ej

obtained in step 2.5 which has a better objective function
value by comparing the interval values Ej to each other.

Step 3: //calculation of widths//.

Step 3.1: Calculate widths wj = uj − lj of Ej
where uj and lj are upper bounds and lower bounds of Ej

Step 3.2: While wj > ε

break

Step 3.3: Set Eopt ← Ej

Return to step 2.1

end for
endwhile.

end j loop
Output

END MULTISECTION

On the basis of this technique we have developed an algo-
rithm for max min and min max solutions of a single objective
interval game.

5.1 Min-Max Principle

Algorithm for min max principle
We conduct operations not on the degree of certainty PAXij but
on interval numbers [6] using the following steps:

Step 1: Put y1 = nh,where h = 1/M and n =

0, 1, 2, 3 · · ·
M = Number of divisions of the interval

[0, 1]
Step 2: For n = i

Find max/optimistic order relation of
Ê(x1, ih),

where 0 ≤ x1 ≤ 1 by using
multisection algorithm 4.1.

Step 3: Let the solution set for x is {x̂1, ̂̂x1, · · · }.
Using pessimistic order relation find

minimum of
{Ê(x̂1, 0), Ê(̂̂x1, h), · · · }.

Suppose it occurs at x1∗, which is a
crisp number.

Step 4: Calculate Ê(x1
∗, y1).

Step 5: Using pessimistic order relation calculate
Ê(x1

∗, y1) for 0 ≤ y1 ≤ 1

by multisection technique. Suppose, the mini-
mum value is Ê∗(x∗1, y1) (say).

Then Ê∗(x∗1, y1) = Ŵ ∗ (by Theorem 4.2)
and x∗ = (x∗1, x

∗
2) = (x∗1, 1− x∗1).
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Therefore (x1
∗, y1

∗) is the optimal solution.

5.2 Max-Min Principle

Algorithm for max min principle 4.2.1

Step 1: Put x1 = nk, where k = 1/N and n =

0, 1, 2, 3, · · ·
N = number of divisions of the interval

[0, 1]

Step 2: For n=i
Find min/pessimistic order relation of

Ê(ik, y1)

where 0 ≤ y1 ≤ 1 by using multisec-
tion technique 4.1.

Step 3: Let the solution set for y is {ŷ1, ̂̂y1 · · · }.
Using optimistic order relation find maxi-

mum of
{Ê(0, ŷ1), Ê(k, ̂̂y1), · · · }.

Suppose it occurs at y1∗, which is a
crisp number.

Step 4: Calculate Ê(x1, y1
∗).

Step 5: Using optimistic order relation calculate
Ê(x1, y1

∗) for 0 ≤ x1 ≤ 1

by multisection technique. Suppose the maxi-
mum value is Ê∗(x1, y∗1) (say).

Then Ê∗(x1, y∗1) = V̂ ∗ (by Theorem 4.2)
and y∗ = (y∗1 , y

∗
2) = (y∗1 , 1− y∗1).

Therefore (x1
∗, y1

∗) is the optimal solution.
Thus

(
x∗, y∗, V̂ ∗, Ŵ ∗

)
is a reasonable solution of the interval

matrix game Ĝ. V̂ ∗ is player A’s gain-floor and Ŵ ∗ is player
B’s loss-ceiling.

6. Demonstration — An Example

Suppose, a company conducts an opinion pole about an elec-
tion. They place some questions in front of the voters and get
answers as ‘We are not very sure that the candidate A’s honesty
is high’ or ‘It is very likely that inflation during the period of the
present government is high’. In such cases, we can consider the
statements as (A’s degree of honesty, high, not sure) or (price
hike, high, very likely). These conditions are representation of
Z-numbers. When this happens between two candidates in an
election, then it forms a matrix game with Z-number. Suppose,
the pay-off matrix is given by

B1 B2

Ĝ2 =
A1

A2

(
(X11; 〈3, 0.5.0〉, 0.1) (X12; 〈4, 1.0〉, 0.8)

(X21; 〈2.5, 0.5〉, 0.8) (X22; 〈3.5, 1〉, 0.1)

)
.

What are the optimal strategies and what is the value of game?
This is an example of 2 × 2 matrix game with Z-number

which has no saddle point because∨
i

{
∧
j

(Xij ;AXij , PAXij )} = (X11; 〈3, 0.5〉, 0.1)

6= (X12; 〈4, 1〉, 0.8)

=
∧
j

{
∨
i

(Xij ;AXij , PAXij )}.

Using the definition of interval expected pay off (4.2) When
we run min max and max min programmes in TURBOC we
get the reasonable solutions as

x∗ = (0.0.9375, 0.0625), y∗ = (0.5, 0.5),

ŵ∗6 = [−20.208344, 26.473831] = (X; 〈3.13, 4.12〉, 0.27)

and

v̂∗6 = [−3.837054, 10.3368151] = (X; 〈3.25, 1.25〉, 0.71).

6.1 Results and Discussions

In this example, we obtain a reasonable solution

V̂ ∗ = (X; 〈3.25, 1.25〉, 0.71)

and
Ŵ ∗ = (X; 〈3.13, 4.12〉, 0.27)

as respectively gain-floor and loss-ceiling of players A and B
with the probabilities x∗ = (0.0.9375, 0.0625), y∗ = (0.5, 0.5).
There is a significance behind the result obtained and the tech-
nique adopted.

(i) Here the pay off actually means some restriction on the
measure of possibility that one can gain or loose with
some degree of certainty and value of the game actu-
ally means measure of possibility of a solution to be an
optimum solution.

(ii) We have tried to arrive at a reasonable solution with
some degree of certainty which is compatible with the
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real world situation as most of the optimization results
obtained with other numbers or intervals lack some com-
patibility with the real world situation. For example,
there are several kinds of imprecisions. What impreci-
sion will then be modelled using a particular approach
is a matter of concern as compared to the existing tech-
niques [6]. In our approach, we have tried to consider a
typical imprecision by using Z-number.

(iii) We have tried to arrive at a higher degree of generality in
the decision making process by using Z-number.

7. Conclusions

In a decision-making process, the information is often found to
be imprecise, incomplete, e.g., ‘about 5%’, ‘high price” etc. In
such a situation it is unlikely that usual approach would give a
desired result. Again, formalization of the imprecision hardly
occurs in our optimization models and there is no universal
model which can consider all types of imprecisions. We of-
ten model certain types of imprecise data with certain type of
membership function or interval numbers. It does not, how-
ever, ensure the optimization universally, i.e., there may be
a chance to arrive at a better optimal solution if we model it
otherwise. So, there is a need for formalization of imprecision
and for that purpose we have used Z-number as a pay off which
actually gives the degree of certainty. On the restriction of
the measure of possibility of pay off one would gain or loose.
Though we have modelled a Z-number with a particular type
of membership and density function there is scope of further
generalization. There is also scope for using this procedure to
solve multi-objective decision-making problems.
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