• Title/Summary/Keyword: optimal maintenance policy

Search Result 115, Processing Time 0.031 seconds

Preventive Maintenance Policy Following the Expiration of Extended Warranty Under Replacement-Repair Warranty (교체-수리보증 하에서 연장된 보증이 종료된 이후의 예방보전정책)

  • Jung, Ki Mun
    • Journal of Applied Reliability
    • /
    • v.14 no.2
    • /
    • pp.122-128
    • /
    • 2014
  • In this paper, we consider the periodic preventive maintenance model for a repairable system following the expiration of extended warranty under replacement-repair warranty. Under the replacement-repair warranty, the failed system is replaced or minimally repaired by the manufacturer at no cost to the user. Also, under extended warranty, the failed system is minimally repaired by the manufacturer at no cost to the user during the original extended warranty period. As a criterion of the optimality, we utilize the expected cost rate per unit time during the life cycle from the user's perspective. And then we determine the optimal preventive maintenance period and the optimal preventive maintenance number by minimizing the expected cost rate per unit time. Finally, the optimal periodic preventive maintenance policy is given for Weibull distribution case.

Optimal Preventive Maintenance Policy Based on Aperiodic Model

  • Kim, Hee-Soo;Yum, Joon-Keun;Park, Dong-Ho
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.11a
    • /
    • pp.335-342
    • /
    • 2000
  • Preventive maintenance(PM) is an action taken on a repairable system while it is still operating, which needs to be carried out in order to keep the system at the desired level of successful operation. The PM improves the reliability of the system by predicting the possible failures and thereby preventing such failures from its occurrence. In this paper, we develop the optimal preventive maintenance policies based on the aperiodic PM model. We investigate an aperiodic preventive maintenance policy and propose several optimal PM policies which minimize the expected cost over an infinite time span. Park, Jung and Yum(2000) determine the optimal period and the optimal number of PMs based on Canfield's(1986) periodic model. Our techniques to derive the optimal preventive maintenance policies based on our aperiodic PM model is similar to those in Park, Jung and Yum(2000), which can be considered as the special case of our results.

  • PDF

Maintenance Policies Following the Expiration of Two-Dimensional Free Replacement Warranty (2차원 무료 보증이 종료된 이후의 보전정책)

  • Kim, Ho-Gyun
    • Journal of Applied Reliability
    • /
    • v.15 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • Maintenance plays an important role in keeping product availability, reliability and quality at an appropriate level. In this paper, two-types of maintenance policies are studied following the expiration of two-dimensional (2D) free replacement warranty. Both the fixed-maintenance-period policy and the variable-maintenance-period policy are based on a specified region of the warranty defined in terms of age and usage where all failures are minimally repaired. An accelerating failure time (AFT) model is used to allow for the effect of usage rate on product degradation. The maintenance model that arises following the expiration of 2D warranty is discussed. The expected cost rates per unit time from the user's point of view are formulated and the optimal maintenance policies are determined to minimize the expected cost rate to the user. Finally numerical examples are given to illustrate the optimal maintenance polices.

Burn-in When Minimal Repair Costs Vary With Time

  • Na, Myung-Hwan;Lee, Sang-Yeol
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.147-151
    • /
    • 2002
  • Burn-in is a widely used method to eliminate initial failures. Preventive maintenance policy such as block replacement with minimal repair at failure is often used in field operation. In this paper burn-in and maintenance policy are taken into consideration at the same time. The cost of a minimal repair is assumed to be a non-decreasing function of its age. The problems of determining optimal burn-in times and optimal maintenance policy are considered.

  • PDF

Optimal Preventive Maintenance Policy for Products Sold Under Warranty (보증하에 판매되는 제품의 적정 예방정비 계획)

  • Chun, Young-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.15 no.2
    • /
    • pp.87-91
    • /
    • 1989
  • A warranty is a contractual obligation incurred by a producer in connection with the sale of a product. The warranty specifies that producer agrees to remedy certain failures in the product sold. There have been many articles dealing with warranties, but they have studied about optimal warranty cost for the warranty period. In this study, an optimal preventive maintenance time interval is computed. The optimal preventive maintenance time interval minimizing warranty cost for the warranty period is discussed. It is assumed that failure rate is increasing and the failure rate after preventive maintenance or corrective maintenance lies between good as new and bad as old.

  • PDF

A Corrective Maintenance Policy Which Determines Replacement or Repair for the Maintenance of System Failures

  • Jang, Jae-Jin;Lie, Chang-Hoon
    • Journal of the military operations research society of Korea
    • /
    • v.15 no.1
    • /
    • pp.54-62
    • /
    • 1989
  • This paper presents a corrective maintenance model to determine either type of maintenance actions upon failure of the system. Types of maintenance actions considered are minimal repair and replacement. Minimal repair cost is assumed to be random, whereas replacement cost is fixed. A policy, B(t), which determines the type of maintenance action based on the estimated minimal repair cost when the system fails at time t is adopted. To obtain an optimal policy, an expected maintenance cost per unit time is derived and is minimized with respect to B(t).

  • PDF

Optimal Number of Failures before Group Replacement under Minimal Repair

  • Young Kwan, Yoo
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.1
    • /
    • pp.61-70
    • /
    • 2004
  • In this paper, a group replacement policy based on a failure count is analysed. For a group of identical repairable units, a maintenance policy is performed with two phase considerations: a repair interval phase and a waiting interval phase. Each unit undergoes minimal repair at failure during the repair interval. Beyond the interval, no repair is made until a number of failures. The expected cost rate expressions under the policy is derived. A method to obtain the optimal values of decision variables are explored. Numerical examples are given to demonstrate the results.

A Bayesian Approach to PM Model with Random Maintenance Quality

  • Jung, Ki-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.689-696
    • /
    • 2007
  • This paper considers a Bayesian approach to determine an optimal PM policy with random maintenance quality. Thus, we assume that the quality of a PM action is a random variable following a probability distribution. When the failure time is Weibull distribution with uncertain parameters, a Bayesian approach is established to formally express and update the uncertain parameters for determining an optimal PM policy. Finally, the numerical examples are presented for illustrative purpose.

  • PDF

Optimal Maintenance Cycle for Aviation Oil Testing Equipment under the Consideration of Operational Environment (운용환경을 고려한 항공오일시험장비의 최적정비주기 설정)

  • Kim, In Seok;Jung, Won
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.224-230
    • /
    • 2016
  • Purpose: Military maintenance involves corrective and preventive actions carried out to keep a system in or restore it to a predetermined condition. This research develops an optimal maintenance cycle for aviation oil testing equipment with acceptable reliability level and minimum maintenance cost. Methods: The optimal maintenance policy in this research aims to satisfy the desired reliability level at the lowest cost. We assume that the failure process of equipment follows the power law non-homogeneous Poisson process model and the maintenance system is a minimal repair policy. Estimation and other statistical procedures (trend test and goodness of fit test) are given for this model. Results: With time varying failure rate, we developed reliability-based maintenance cost optimization model. This model will reduce the ownership cost through adopting a proactive reliability focused maintenance system. Conclusion: Based on the analysis, it is recommended to increase the current maintenance cycle by three times which is 0.5 year to 1.5 years. Because of the system's built-in self-checking features, it is not expected to have any problems of preventative maintenance cycle.