• 제목/요약/키워드: optimal length

검색결과 1,711건 처리시간 0.027초

최소 절삭력형 밀링커터의 가공에서 공구마멸 및 칩의 특성에 관한 연구 (A Study about Character of Tool Wear and Chip on The Face Milling Cutter to Minimize Resultant Cutting Force)

  • 김희술
    • 한국생산제조학회지
    • /
    • 제9권2호
    • /
    • pp.72-79
    • /
    • 2000
  • A new optimal tool design model which can be minimized the resultant cutting forces under the constrains of variables was developed. The resultant cutting forces are used as the objective function and tool angles are used as the variables. Cutting experiments of tool wear and chip length using the new and conventional tools wee carried out. Tool life of optimized cutter are more increased than those of conventional cutter by 2.29 times and 2.52 times at light and at heavy cutting conditions respectively. Chip length of optimized cutter are more increased than those of conventional cutter It is considered that the decrease of the resultant cutting forces is the cause that an effective rake and shear angles by the shape of optimal cutter.

  • PDF

가포화 자기스위치 MPC를 적용한 저온 플라즈마의 펄스에너지 전송효율 특성 (The Study on the Optimal Transmission Efficiency Characteristics of Pulse Energy Using Magnetic Pulse Compressors)

  • 이유수;정종한;정현주;김문환;김희제
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권9호
    • /
    • pp.383-387
    • /
    • 2003
  • In this paper, we have studied about optimal transmission efficiency characteristics of pulse energy in a coal plant for removing environmental polluted gas. The electrical efficiency of pulse power systems depends on impedance of the reactor. To obtain high efficiency, we used MPC(Magnetic pulse compressor) as the power switch and tested their characteristics as electrode length of the reactor and charging voltage of capacitor, As results, we obtained a compressed pulse such as pulse voltage of 10㎸, rising time 200ns and pulse width of 500ns. With increasing electrode length, the load impedance was decreased but the electrical efficiency was increased.

퇴화하는 기걔에서의 품질 불량을 고려한 최적 생산시간 결정 (An optimal production run length in a deteriorating machine)

  • 김창현;홍유신
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.290-293
    • /
    • 1996
  • This paper presents an EMQ model which determines an optimal production run length in a deteriorating machine. It is assumed that a machine is subject to a random deterioration from an in-control state to an out-of-control state with an arbitrary distribution and thus producing constant proportion of defective items. An average cost function and an optimal production run length are determined. A mistake in previous model is found and discussed. A mistake in previous model is found and discussed. Numerical experiments are carried out to see the behavior of the proposed model depending on the cost factors as well as machine parameters, and some interesting behaviors are observed.

  • PDF

Queue Management using Optimal Margin method to Improve Bottleneck Link Performance

  • Radwa, Amr
    • 한국멀티미디어학회논문지
    • /
    • 제18권12호
    • /
    • pp.1475-1482
    • /
    • 2015
  • In network routers, buffers are used to resolve congestion and reduce packet loss rate whenever congestion occurs at bottleneck link. Most of the existing methods to manage such buffers focus only on queue-length-based control as one loop which have some issues of low link utilization and system stability. In this paper, we propose a novel framework which exploits two-loop control method, e.g. queue-length and congestion window size, combined with optimal margin method to facilitate parameter choices. Simulation results in ns-2 demonstrate that bottleneck link performance can be improved with higher link utilization (85%) and shorter queue length (22%) than the current deployed scheme in commercial routers (RED and DropTail).

퇴화하는 기계에서의 품질 불량을 고려한 최적 생산시간 결정 (An Optimal Production Run Length in A Deteriorating Machine)

  • 김창현;홍유신
    • 대한산업공학회지
    • /
    • 제22권3호
    • /
    • pp.351-364
    • /
    • 1996
  • This paper presents on EMQ model which determines an optimal production run length in a deteriorating machine. It is assumed that a machine is subject to a random deterioration from an in-control state to an out-of-control state with on arbitrary distribution and thus producing some proportion of defective items. An optimal production run length and a minimum average cost are derived in each of three deteriorating processes; constant, linearly increasing, and exponentially increasing. The model with repair cost is also analyzed. Several mistakes in previous research are found and discussed. Numerical experiments are carried out to see the behavior of the proposed model depending on the cost factors as well as machine parameters, and some interesting behaviors are observed.

  • PDF

Optimum pile arrangement in piled raft foundation by using simplified settlement analysis and adaptive step-length algorithm

  • Nakanishi, Keiji;Takewaki, Izuru
    • Geomechanics and Engineering
    • /
    • 제5권6호
    • /
    • pp.519-540
    • /
    • 2013
  • This paper presents an optimal design method for determining pile lengths of piled raft foundations. The foundation settlement is evaluated by taking into account the raft-pile-soil interaction. The analysis of settlement is simplified by using Steinbrenner's equation. Then the total pile length is minimized under the settlement constraint. An extended sequential linear programming technique combined with an adaptive step-length algorithm of pile lengths is used to solve the optimal design problem. The accuracy of the simplified settlement analysis method and the validity of the obtained optimal solution are investigated through the comparison with the actual measurement result in existing piled raft foundations.

극저온 냉동기로 냉각되는 이중전류도입선의 최적설계 (Optimal design of binary current leads cooled by cryogenic refrigerator)

  • 송성재;장호명
    • 설비공학논문집
    • /
    • 제9권4호
    • /
    • pp.552-560
    • /
    • 1997
  • Analysis is performed to determine the optimal lengths or cross-sectional areas of refrigerator-cooled current leads that can be applied to the conduction-cooled superconducting systems. The binary current lead is composed of the series combination of a normal metal at the upper(warm) part and a high $T_c$ superconductor(HTS) at the lower(cold) part. The heat conduction toward the cold end of HTS part constitutes a major refrigeration load. In addition, the joint between the parts should be cooled by a refrigerator in order to reduce the load at the low end and maintain the HTS part in a superconducting state. The sum of the work inputs required for the two refrigeration loads needs to be minimized for an optimal operation. In this design, three simple models that depict the refrigeration performance as functions of cooling temperature are developed based on some of the existing refrigerators. By solving one-dimensional conduction equation that take into account the temperature-dependent properties of the materials, the refrigeration works are numerically calculated for various values of the joint temperature and the sizes of two parts. The results show that for given size of HTS, there exist the optimal values for the joint temperature and the size of the normal metal. It is also found that the refrigeration work decreases as the length of HTS increases and that the optimal size of normal metal is quite independent of the size of HTS. For a given length of HTS, there is an optimal cross-sectional area and it increases as the length increases. The dependence of the optimal sizes on the refrigerator models employed are presented for 1kA leads.

  • PDF

ARC-LENGTH ESTIMATIONS FOR QUADRATIC RATIONAL B$\acute{e}$zier CURVES COINCIDING WITH ARC-LENGTH OF SPECIAL SHAPES

  • Kim, Seon-Hong;Ahn, Young-Joon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제15권2호
    • /
    • pp.123-135
    • /
    • 2011
  • In this paper, we present arc-length estimations for quadratic rational B$\acute{e}$zier curves using the length of polygon and distance between both end points. Our arc-length estimations coincide with the arc-length of the quadratic rational B$\acute{e}$zier curve exactly when the weight ${\omega}$ is 0, 1 and ${\infty}$. We show that for all ${\omega}$ > 0 our estimations are strictly increasing with respect to ${\omega}$. Moreover, we find the parameter ${\mu}^*$ which makes our estimation coincide with the arc-length of the quadratic rational B$\acute{e}$zier curve when it is a circular arc too. We also show that ${\mu}^*$ has a special limit, which is used for optimal estimation. We present some numerical examples, and the numerical results illustrates that the estimation with the limit value of ${\mu}^*$ is an optimal estimation.

피부주름두께 측정을 통한 성인의 둔부 근육주사 바늘의 최적 길이 예측 (Prediction of Optimal Gluteal Intramuscular Needle Length by Skinfold Thickness Measurements in Korean Adults)

  • 최동원;송경애;김범수
    • 대한간호학회지
    • /
    • 제40권6호
    • /
    • pp.844-851
    • /
    • 2010
  • Purpose: This study was conducted to assess optimal needle length for gluteal intramuscular injections (IM) via simple skinfold thickness (SFT). Methods: For this study, 190 healthy adults were recruited and grouped into eight groups according to gender and body mass index (BMI) (kg/$m^2$). The Korean Society for the Study of Obesity criteria defines a BMI under 20 as underweight, 20.1-22.9 as normal, 23-24.9 as overweight and over 25 as obese. For each participant, the SFT of dorsoguteal (DG) and ventrogluteal (VG) sites were measured using a caliper. Subcutaneous tissue thickness was acquired through ultrasonic images. Results: For men in the overweight and obese groups at the DG site, for the obese group at the VG site, and for women in the normal weight, overweight and obese groups at both sites, the mean subcutaneous tissue thickness exceeded 1.84 cm, the minimal length for a 1 inch needle used for IM. At the DG site, optimal intramuscular needle length (OINL) was 1.4 times in women and 1.0 times in men compared to SFT. At the VG site, OINL was 1.3 times in women and 0.9 times in men compared to SFT. Conclusion: The results of this study suggest that SFT is a reliable index to determine optimal needle length with minimal effort prior to IM.

반용융 단조를 위한 유도가열용 코일설계의 최적화 및 실험적 연구 (An Optimization of Inductive Coil Design for Thixoforging and Its Experimental Study)

  • 정홍규;김남석;강충길
    • 한국주조공학회지
    • /
    • 제19권5호
    • /
    • pp.393-402
    • /
    • 1999
  • The reheating of the billet in the semi-solid state as quickly and homogeneously as possible is one of the most important aspects. From this point of view, an optimal design of the induction coil is necessary. The objective of inductive coil designsi a uniform induction heating over the length of the billet. The effect of coil length, diameter, the gap between coil surface and billet and axial position of the billet on temperature distribution of billet has been investigated. These design parameters have an important effectiveness on the electro-magnetic field. Therefore, in this study an optimal coil design to minimize electromagnetic ed effect will be proposed by defining the relationship between billet length and coil length. In particular, key point in induction heating process is focussed on optimizing the coil design with regard to the size of the heating billet and the frequency of induction heating system. After demonstrating the suitability of an optimal coil design through the FEM simulation of the induction heating process, the results of the coil design are also applied to the reheating process to obtain a fine globular microstructure. Its considered that the reheating conditions of aluminum alloys for thixoforging and a new CAE model of the induction heating process are very useful for thixoforging practitioners including induction heating ones.

  • PDF