• Title/Summary/Keyword: optimal experimental design

Search Result 1,325, Processing Time 0.033 seconds

Development of a Friction Tester and Experimental Study on the Frictional Characteristics of Rubbers (고무류의 마찰시험기 개발 및 마찰특성에 관한 실험적연구)

  • 천길정;오성모;이동환;이봉구;김완두
    • Tribology and Lubricants
    • /
    • v.15 no.2
    • /
    • pp.193-198
    • /
    • 1999
  • Applying design methodology, new type friction tester has been developed. Functional analysis has been executed and functional structure were constructed during the conceptual design. Optimal solution has been selected and a proto model has been manufactured according to the conceptual design. Using the tester developed in the laboratory, frictional characteristics of natural rubbers have been experimentally analyzed. Friction coefficient has been calculated from the measured normal force and friction force under various speeds, loads, and temperatures. The corelations between the various operating conditions and friction coefficients have been verified. Especially, drag friction due to the visco-elastic behavior of the rubber has been observed in this analysis.

First Principles Computational Study of Surface Reactions Toward Design Concepts of High Functional Electrocatalysts for Oxygen Reduction Reaction in a Fuel Cell System

  • Hwang, Jeemin;Noh, Seunghyo;Kang, Joonhee;Han, Byungchan
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Design of novel materials in renewable energy systems plays a key role in powering transportation vehicles and portable electronics. This review introduces the research work of first principles-based computational design for the materials over the last decade to accomplish the goal with less financial and temporal cost beyond the conventional approach, especially, focusing on electrocatalyst toward a proton exchange membrane fuel cell (PEMFC). It is proposed that the new method combined with experimental validation, can provide fundamental descriptors and mechanical understanding for optimal efficiency control of a whole system. Advancing these methods can even realize a computational platform of the materials genome, which can substantially reduce the time period from discovery to commercialization into markets of new materials.

Experimental Study on Optimization of Slab Form Design Using Harmonic Search Algorithm (하모닉 알고리즘을 활용한 슬래브 거푸집 디자인 최적화에 관한 실험적인 연구)

  • Jang, Indong;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.185-186
    • /
    • 2018
  • The slabfrom, which is commonly used in construction sites, has drawbacks in that the workability of the workers is reduced due to their heavy weight. This study investigates the possibility of design optimization of euro form between structural stability and weight using harmonic search algorithm. The harmonic search algorithm is a metaheuristic optimization technique that obtains multiple optimal solution candidates through iterative. As a result of multiple attempts of optimization through the algorithm, it was possible to design the formwork which is structurally stable and light in weight than the existing formwork.

  • PDF

Surrogate Based Optimization Techniques for Aerodynamic Design of Turbomachinery

  • Samad, Abdus;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.179-188
    • /
    • 2009
  • Recent development of high speed computers and use of optimization techniques have given a big momentum of turbomachinery design replacing expensive experimental cost as well as trial and error approaches. The surrogate based optimization techniques being used for aerodynamic turbomachinery designs coupled with Reynolds-averaged Navier-Stokes equations analysis involve single- and multi-objective optimization methods. The objectives commonly tried to improve were adiabatic efficiency, pressure ratio, weight etc. Presently coupling the fluid flow and structural analysis is being tried to find better design in terms of weight, flutter and vibration, and turbine life. The present article reviews the surrogate based optimization techniques used recently in turbomachinery shape optimizations.

A Study of Design of Outer Rotor Type BLDC Motor for Service Robot Arm (유한요소법을 이용한 서비스 로봇관절용 외전형 BLDC 모터설계에 관한 연구)

  • Kim, Young Kyoun
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.6
    • /
    • pp.198-202
    • /
    • 2015
  • This s paper presents characteristics Analysis of Outer Rotor type BLDC Motor. To reduce the cogging torque and to make the high back EMF constant of the motor, Not only magnetization directions of a permanent magnet are investigated, but also a tooth chamfer of a stator is optimized. The design and analysis results are verified with experimental results.

Economic Design of Reliable Networks Using Scatter Search (Scatter Search를 이용한 신뢰성 있는 네트워크의 경제적 설계)

  • Lee, Han-Jin;Yum, Chang-Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.1
    • /
    • pp.101-107
    • /
    • 2008
  • This paper considers a topological optimization of a computer network design with a reliability constraint. The objective is to find the topological layout of links, at minimal cost, under the constraint that the network reliability is more than a given reliability. To efficiently solve the problem, a scatter search approach is proposed. Two illustrative examples are used to explain and test the proposed approach. Experimental results show evidence that the proposed approach performs more efficiently for finding a good solution or near optimal solution in comparison with a genetic algorithm approach.

Design Space Exploration of Many-Core Architecture for Sound Synthesis of Guitar on Portable Device (휴대 장치용 기타 음 합성을 위한 매니코어 아키텍처의 디자인 공간 탐색)

  • Kang, Myeongsu;Kim, Jong-Myon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.1-4
    • /
    • 2014
  • Although physical modeling synthesis is becoming more and more efficient in rich and natural high-quality sound synthesis, its high computational complexity limits its use in portable devices. This constraint motivated research of single-instruction multiple-data many-core architectures that support the tremendous amount of computations by exploiting massive parallelism inherent in physical modeling synthesis. Since no general consensus has been reached which grain sizes of many-core processors and memories provide the most efficient operation for sound synthesis, design space exploration is conducted for seven processing element (PE) configurations. To find an optimal PE configuration, each PE configuration is evaluated in terms of execution time, area and energy efficiencies. Experimental results show that all PE configurations are satisfied with the system requirements to be implemented in portable devices.

  • PDF

A Parameter Design Approach to Solve Some Inherent Problems of a Pilot Cola Machine (Parameter Design 에 의한 Prototype 콜라머신 설계상의 문제해결)

  • Jeon, Tae-Bo
    • IE interfaces
    • /
    • v.5 no.1
    • /
    • pp.25-34
    • /
    • 1992
  • A study to analyze and solve inherent problems of a pilot cola machine has been presented in this paper. The product considered in this study involves at least 16 variables(factors) which simultaneously affect the product performance. For this multi-variate statistical problem, we first carefully examined their relationships and selected four variables considered as the most important. We have taken Taguchi's parameter design approach, specifically the $L_8\:(2^7)$ orthogonal array, and determined the optimal levels of the selected variables through the analysis of the experimental results. Finally, we conclude this study with providing general comments drawn from the analysis and verification experiments.

  • PDF

CPLD Low Power Technology Mapping for Reuse Module Design under the Time Constraint (시간제약 조건하에서 재사용 모듈 설계를 통한 CPLD 저전력 기술 매핑)

  • Kang, Kyung Sik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.3
    • /
    • pp.77-83
    • /
    • 2008
  • In this paper, CPLD low power technology mapping for reuse module design under the time constraint is proposed. Traditional high-level synthesis do not allow reuse of complex, realistic datapath component during the task of scheduling. On the other hand, the proposed algorithm is able to approach a productivity of the design the low power to reuse which given a library of user-defined datapath component and to share of resource sharing on the switching activity in a shared resource. Also, we are obtainable the optimal the scheduling result in experimental results of our using chaining and multi-cycling in the scheduling techniques. Low power circuit make using CPLD technology mapping algorithm for selection reuse module by scheduling.

A Study on Control of Mobile Cranes (이동 CRANE의 제어에 관한 연구)

  • Kim, Sang-Bong;Shin, Min-Saeng;Kim, Hwan-Seong;Jeong, Yong-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.47-56
    • /
    • 1991
  • The specifications needed for the mobile cranes are summarized as the following : 1) there may be not occured the oscillation of the cargo at unloading point. 2)the required time from departure point to destination point may be as short as possible. 3) there may be not a collapse of cargo caused by the oscillation in the course that the crago is mobilling. In this paper, the linear fractional transformation method is adopted as a method in order to improve the above mentioned problems. A design method of servo system is developed by modifying Davison's method for the case that the homogeneous differential equations of reference input and disturbance are different types. The real time control of a mobile crane system is implemented by 16bits microcomputer with A/D and D/A converters to illustrate the application of the adopted method. The experimental results for the three types of the design methods; linear fractional transformation method, servo system design method and optimal control method are shown for the comparison.

  • PDF