• Title/Summary/Keyword: optimal countermeasure

Search Result 41, Processing Time 0.026 seconds

CFD Analysis on the Fresh Air Distribution in the Catalytic Converter Varying Secondary Air Injector Position (2차 공기 분사 위치에 따른 촉매 내 공급 공기 분포에 대한 전산 유동해석)

  • Yun, Jeong-Eui
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.31-36
    • /
    • 2010
  • SAI(Secondary Air Injection) system has been studied widely as one of the promising countermeasure for reducing HC emission at cold start. In this paper, in order to find out the optimal position of SAI, computational thermal fluid analysis on exhaust system adapted SAI system is performed using commercial 3-D CFD code, CFX. The present results showed that SAI position strongly affected the uniformity of air distribution in front of catalyst. And also through the decision process of optimal position of SAI, new index, uniformity of air distribution($U_{\phi}$) is proposed to define it quantitively. Because $U_{\phi}$ is very simple equation and similar with flow uniformity, it is very easy to figure out the physical meaning and to apply it to practices. Finally, we applied the index $U_{\phi}$ to the decision process of the optimal position of SAI, so that we could get the clear comparison results.

A Study on the Evaluation Algorithm for Performance Improvement in PV Modules

  • Kim, Byung-ki;Choi, Sung-sik;Wang, Jong-yong;Oh, Seung-Taek;Rho, Dae-seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1356-1362
    • /
    • 2015
  • The location of PV systems in distribution system has been increased as one of countermeasure for global environmental issues. As the operation efficiency of PV systems is getting decreased year by year due to the aging phenomenon and maintenance problems, the optimal algorithm for state diagnosis in PV systems is required in order to improve operation performance in PV systems. The existing output prediction algorithms considering various parameters and conditions of PV modules could have complicated calculation process and then their results may have a possibility of significant prediction error. To solve these problems, this paper proposes an optimal prediction algorithm of PV system by using least square methods of linear regression analysis. And also, this paper presents a performance evaluation algorithm in PV modules based on the proposed optimal prediction algorithm of PV system. The simulation results show that the proposed algorithm is a practical tool of the state diagnosis for performance improvement in PV systems.

Design of Mixed Integer Linear Programming Model for Strategic Location Decision -Focused on the Automotive Industry SCM- (혼합정수 계획법을 이용한 전략적 입지선정 -자동차 SCM을 중심으로-)

  • Young-Kyou HA;Su-Han Woo
    • Korea Trade Review
    • /
    • v.46 no.2
    • /
    • pp.213-228
    • /
    • 2021
  • In recent year, US government requires local investment ,unlike in the past, when import restrictions and tariff were imposed. In this situation, many companies are considering new investment in the US and entering the local market. However, research on the optimal investment plan along with the case analysis on trade regulation is extremely limited and more research needs to be conducted. Accordingly, this study aims to suggest the implications and countermeasure of the SCM and logistical perspective by studying the optimal measures for the new investment of each company due to trade regulation. As a research method, the gravity location model, Mixed Integer Linear Programming Model were used to select the optimal automobile manufacturing factory considering each state's population. This study will be implication of SCM and logistics perspective not only for companies considering new investment in the US but also for the government to conduct trade negotiations. In the future, it is expected that the US trade pressure will increase and affect Korea in many ways. Therefore, in order to cope with such difficult situation in a timely manner, continuous research considering various possibilities is needed in the future.

Fuzzy Model Identification Using VmGA

  • Park, Jong-Il;Oh, Jae-Heung;Joo, Young-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.53-58
    • /
    • 2002
  • In the construction of successful fuzzy models for nonlinear systems, the identification of an optimal fuzzy model system is an important and difficult problem. Traditionally, sGA(simple genetic algorithm) has been used to identify structures and parameters of fuzzy model because it has the ability to search the optimal solution somewhat globally. But SGA optimization process may be the reason of the premature local convergence when the appearance of the superior individual at the population evolution. Therefore, in this paper we propose a new method that can yield a successful fuzzy model using VmGA(virus messy genetic algorithms). The proposed method not only can be the countermeasure of premature convergence through the local information changed in population, but also has more effective and adaptive structure with respect to using changeable length string. In order to demonstrate the superiority and generality of the fuzzy modeling using VmGA, we finally applied the proposed fuzzy modeling methodof a complex nonlinear system.

Nose Shape Optimization of the High-Speed Train for the Speed-up in Tunnel (터널 주행속도 향상을 위한 고속열차 전두부 형상 최적화)

  • Ku, Yo-Cheon;Yun, Su-Hwan;Rho, Joo-Hyun;Kim, Kyu-Hong;Lee, Dong-Ho;Kwon, Hyeok-Bin
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2207-2212
    • /
    • 2008
  • The next generation of Korean high-speed train under development will be designed for the maximum operating speed of 350km/h and maximum speed of 400km/h. This high-speed operation may cause the noise and vibration problems around tunnel exit due to the higher micro-pressure wave than present level. In this study, the nose shape optimization was conducted for the countermeasure against these problems. Axi-symmetric solver was used for numerical simulation, and response surface was used for efficiency of optimization process. Also the multi-step optimization was conducted to find out more accurate optimal shape. Through these analysis and optimization, it was found out that the optimal nose shapes for minimization of micro-pressure wave are definitely different along the nose length variation. And the mechanism of micro-pressure wave reduction was closely investigated by the analysis of generation process of compression wave in tunnel. The results are expected to be used as design guideline for performance improvement of the next generatin of Korean high-speed train.

  • PDF

Optimal Design Method of Dynamic Vibration Absorber to Reduce Resonant Vibration Response of Ship Local Structure (선박 국부구조의 공진응답 저감을 위한 동흡진기 최적 설계 방법)

  • Kwon, Hyuk;Cho, Daeseung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.134-140
    • /
    • 2022
  • Ship local structure sometimes experiences severe vibration due to the resonance with an excitation force generated by the propulsion system. In that case, the installation of dynamic vibration absorber such as Tuned Mass Damper (TMD) on the structure can be considered as an effective alternative countermeasure to reduce the troublesome vibration if structural modification or change of excitation frequencies is difficult. Meanwhile, the conventional optimal design method of TMD premises the target structure exposed on an excitation force without the constraint of its magnitude and frequency range. However, the frequencies of major ship excitation forces due to propulsion system are normally bounded and its magnitude is varied according to its operation speed. Hence, the optimal design of TMD to reduce the resonant vibration of ship local structure should be differently approached compared with the conventional ones. For the purpose, this paper proposes an optimal design method of TMD considering maximum frequency and magnitude variation of a target harmonic excitation component. It is done by both lowering the resonant response at the 1st natural frequency and locating the 2nd natural frequency over maximum excitation frequency for the idealized 2 degree of freedom system consisted of the structure and the TMD. For the validation of the proposed method, a numerical design case of TMD for a ship local structure exposed on resonant vibration due to a propeller excitation force is introduced and its performance is compared with the conventionally designed one.

A Methodology for Justification and Optimization of Countermeasures for Milk After a Nuclear Accident and Its Application (원자력 사고후 우유에 대한 비상대응의 정당화/최적화를 위한 방법론 및 적용연구)

  • Hwang, Won-Tae;Han, Moon-Hee;Kim, Eun-Han;Cho, Gyu-Seong
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.243-249
    • /
    • 1998
  • The methodology for justification and optimization of the countermeasures related with contamination management of milk was designed based on the cost and benefit analysis. The application results were discussed for the deposition on August 15, when pasture is fully developed in Korean agricultural conditions. A dynamic food chain model DYNACON was used to estimate the time-dependent radioactivity of milk after the deposition. The considered countermeasures are (1) the ban of milk consumption (2) the substitution of clean fodder, which are effective in reducing the ingestion dose as well as simple and easy to carry out in the first year after the deposition. The total costs of the countermeasures were quantitatively estimated in terms of cost equivalent of doses and monetary costs. It is obvious that a fast reaction after the deposition is an important factor in cost effectiveness of the countermeasures. In most cases, the substitution of clean fodder was more effective countermeasure than the ban of consumption. A fast reaction after the deposition made longer justifiable/optimal duration of the countermeasure.

  • PDF

The Optimum Control Study for Improving Efficiency of the small hydropower generation in water pipe (수도관로 소수력발전 운영효율 향상을 위한 최적제어 방안)

  • Hong, Jeong-Jo;Rim, Dong-Heui;Kim, Soo-Sang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.126-129
    • /
    • 2008
  • Using a surplus head in presented water supply pipes, we have studied to improve the operating efficiency of small hydro generator, which was chosen for a test model with Sung-Nam and Bo-Ryong small hydro power plant. With regard to power control and countermeasure of water hammer impact, Finally we have represented the optimal control method through the synthetical analysis of existing system symptoms, operation efficiency, the effect of water hammer impact and system configuration.

  • PDF

Secure Authentication with Mobile Device for Ubiquitous RFID Healthcare System in Wireless Sensor Networks

  • Kim, Jung-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.562-566
    • /
    • 2011
  • As telecommunication technologies in telemedicine services are developed, the expeditious development of wireless and mobile networks has stimulated wide applications of mobile electronic healthcare systems. However, security is an essential system requirement since many patients have privacy concerns when it comes to releasing their personal information over the open wireless channels. Due to the invisible feature of mobile signals, hackers have easier access to hospital networks than wired network systems. This may result in several security incidents unless security protocols are well prepared. In this paper, we analyzed authentication and authorization procedures for healthcare system architecture to apply secure M-health systems in the hospital environment. From the analyses, we estimate optimal requirements as a countermeasure to its vulnerabilities.

A Study on the Investigation of Special Safety Health Training System and Countermeasures in Construction Industry (건설업에서 특별안전보건교육제도의 문제점 및 대책 연구)

  • Kim, Seung-Han;Bang, Myung-Seok
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.1
    • /
    • pp.29-35
    • /
    • 2014
  • The purpose of this study is to investigate the problem on safety and health training system in Occupational Safety and Health Act(OSHA) and to find countermeasures to improve it in the construction industry. The questionary survey was done on aiming at tracing the legal drawbacks of safety and health training system. The questionary was prepared to target on site workers, management supervisors, and safety supervisors in various construction sites. After analyzing the answers from the survey, realistic and optimal countermeasures on derived problems were proposed. These should be included on the next revision of OSHA.