• Title/Summary/Keyword: optimal classification method

Search Result 368, Processing Time 0.033 seconds

Improvement of Self Organizing Maps using Gap Statistic and Probability Distribution

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.116-120
    • /
    • 2008
  • Clustering is a method for unsupervised learning. General clustering tools have been depended on statistical methods and machine learning algorithms. One of the popular clustering algorithms based on machine learning is the self organizing map(SOM). SOM is a neural networks model for clustering. SOM and extended SOM have been used in diverse classification and clustering fields such as data mining. But, SOM has had a problem determining optimal number of clusters. In this paper, we propose an improvement of SOM using gap statistic and probability distribution. The gap statistic was introduced to estimate the number of clusters in a dataset. We use gap statistic for settling the problem of SOM. Also, in our research, weights of feature nodes are updated by probability distribution. After complete updating according to prior and posterior distributions, the weights of SOM have probability distributions for optima clustering. To verify improved performance of our work, we make experiments compared with other learning algorithms using simulation data sets.

Application of Genetic and Local Optimization Algorithms for Object Clustering Problem with Similarity Coefficients (유사성 계수를 이용한 군집화 문제에서 유전자와 국부 최적화 알고리듬의 적용)

  • Yim, Dong-Soon;Oh, Hyun-Seung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.1
    • /
    • pp.90-99
    • /
    • 2003
  • Object clustering, which makes classification for a set of objects into a number of groups such that objects included in a group have similar characteristic and objects in different groups have dissimilar characteristic each other, has been exploited in diverse area such as information retrieval, data mining, group technology, etc. In this study, an object-clustering problem with similarity coefficients between objects is considered. At first, an evaluation function for the optimization problem is defined. Then, a genetic algorithm and local optimization technique based on heuristic method are proposed and used in order to obtain near optimal solutions. Solutions from the genetic algorithm are improved by local optimization techniques based on object relocation and cluster merging. Throughout extensive experiments, the validity and effectiveness of the proposed algorithms are tested.

Fuzzy Training Based on Segmentation Using Spatial Region Growing

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.353-359
    • /
    • 2004
  • This study proposes an approach to unsupervisedly estimate the number of classes and the parameters of defining the classes in order to train the classifier. In the proposed method, the image is segmented using a spatial region growing based on hierarchical clustering, and fuzzy training is then employed to find the sample classes that well represent the ground truth. For cluster validation, this approach iteratively estimates the class-parameters in the fuzzy training for the sample classes and continuously computes the log-likelihood ratio of two consecutive class-numbers. The maximum ratio rule is applied to determine the optimal number of classes. The experimental results show that the new scheme proposed in this study could be used to select the regions with different characteristics existed on the scene of observed image as an alternative of field survey that is so expensive.

Intelligent Automated Cognitive-Maturity Recognition System for Confidence Based E-Learning

  • Usman, Imran;Alhomoud, Adeeb M.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.223-228
    • /
    • 2021
  • As a consequence of sudden outbreak of COVID-19 pandemic worldwide, educational institutes around the globe are forced to switch from traditional learning systems to e-learning systems. This has led to a variety of technology-driven pedagogies in e-teaching as well as e-learning. In order to take the best advantage, an appropriate understanding of the cognitive capability is of prime importance. This paper presents an intelligent cognitive maturity recognition system for confidence-based e-learning. We gather the data from actual test environment by involving a number of students and academicians to act as experts. Then a Genetic Programming based simulation and modeling is applied to generate a generalized classifier in the form of a mathematical expression. The simulation is derived towards an optimal space by carefully designed fitness function and assigning a range to each of the class labels. Experimental results validate that the proposed method yields comparative and superior results which makes it feasible to be used in real world scenarios.

Bearing/Range Estimation Method using NLS Cost Function in IDRS System (IDRS 시스템에서 Curve Fitting이 적용된 NLS 비용함수를 이용한 방위/거리 추정 기법)

  • Jung, Tae-Jin;Kim, Dae-Kyung;Kwon, Bum-Soo;Yoon, Kyung-Sik;Lee, Kyun-Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.590-597
    • /
    • 2011
  • The IDRS provides detection, classification and bearing/range estimation by performing wavefront curvature analysis on an intercepted active transmission from target. Especially, a estimate of the target bearing/range that significantly affects the optimal operation of own submarine is required. Target bearing/range can be estimated by wavefront curvature ranging which use the difference of time arrival at sensors. But estimation ambiguity occur in bearing/range estimation due to a number of peaks caused by high center frequency and limited bandwidth of the intercepted active transmission and distortion caused by noise. As a result the bearing/range estimation performance is degraded. To estimate target bearing/range correctly, bearing/range estimation method that eliminate estimation ambiguity is required. In this paper, therefore, for wavefront curvature ranging, NLS cost function with curve fitting method is proposed, which provide robust bearing/range estimation performance by eliminating estimation ambiguity. Through simulation the performance of the proposed bearing/range estimation methods are verified.

Distance Relaying Algorithm Based on An Adaptive Data Window Using Least Square Error Method (최소자승법을 이용한 적응형 데이터 윈도우의 거리계전 알고리즘)

  • Jeong, Ho-Seong;Choe, Sang-Yeol;Sin, Myeong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.371-378
    • /
    • 2002
  • This paper presents the rapid and accurate algorithm for fault detection and location estimation in the transmission line. This algorithm uses wavelet transform for fault detection and harmonics elimination and utilizes least square error method for fault impedance estimation. Wavelet transform decomposes fault signals into high frequence component Dl and low frequence component A3. The former is used for fault phase detection and fault types classification and the latter is used for harmonics elimination. After fault detection, an adaptive data window technique using LSE estimates fault impedance. It can find a optimal data window length and estimate fault impedance rapidly, because it changes the length according to the fault disturbance. To prove the performance of the algorithm, the authors test relaying signals obtained from EMTP simulation. Test results show that the proposed algorithm estimates fault location within a half cycle after fault irrelevant to fault types and various fault conditions.

Algorithm of Holding Time Control Using Delay-Tolerant Packet for Energy-Efficient Transmission (에너지 효율적인 전송을 위한 지연 허용 패킷의 유지시간 제어 알고리즘)

  • Ryu, Seung Min;Choi, Won Seok;Choi, Seong Gon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.4
    • /
    • pp.87-94
    • /
    • 2016
  • This paper proposes an energy transmission method to maximize energy efficiency of a based station. This method makes use of classification of service type to solve an inefficient use of transmission power, which is from exponential relationship between the legacy data throughput and transmission power. The proposed one is a way to find the most energy-efficiency points with the transmitted optimal amount of data on users in a base station of wireless network environment. For this, we propose EETA (Energy-Efficient Transmission Algorithm) which can control the amount of data and the holding time at the base station. As a result, the proposed method can improve the energy efficiency of about 10% compared to the legacy base station.

A Comprehensive Study on Key Components of Grayscale-based Deepfake Detection

  • Seok Bin Son;Seong Hee Park;Youn Kyu Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2230-2252
    • /
    • 2024
  • Advances in deep learning technology have enabled the generation of more realistic deepfakes, which not only endanger individuals' identities but also exploit vulnerabilities in face recognition systems. The majority of existing deepfake detection methods have primarily focused on RGB-based analysis, offering unreliable performance in terms of detection accuracy and time. To address the issue, a grayscale-based deepfake detection method has recently been proposed. This method significantly reduces detection time while providing comparable accuracy to RGB-based methods. However, despite its significant effectiveness, the "key components" that directly affect the performance of grayscale-based deepfake detection have not been systematically analyzed. In this paper, we target three key components: RGB-to-grayscale conversion method, brightness level in grayscale, and resolution level in grayscale. To analyze their impacts on the performance of grayscale-based deepfake detection, we conducted comprehensive evaluations, including component-wise analysis and comparative analysis using real-world datasets. For each key component, we quantitatively analyzed its characteristics' performance and identified differences between them. Moreover, we successfully verified the effectiveness of an optimal combination of the key components by comparing it with existing deepfake detection methods.

Vessel Tracking Algorithm using Multiple Local Smooth Paths (지역적 다수의 경로를 이용한 혈관 추적 알고리즘)

  • Jeon, Byunghwan;Jang, Yeonggul;Han, Dongjin;Shim, Hackjoon;Park, Hyungbok;Chang, Hyuk-Jae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.137-145
    • /
    • 2016
  • A novel tracking method is proposed to find coronary artery using high-order curve model in coronary CTA(Computed Tomography Angiography). The proposed method quickly generates numerous artificial trajectories represented by high-order curves, and each trajectory has its own cost. The only high-ranked trajectories, located in the target structure, are selected depending on their costs, and then an optimal curve as the centerline will be found. After tracking, each optimal curve segment is connected, where optimal curve segments share the same point, to a single curve and it is a piecewise smooth curve. We demonstrated the high-order curve is a proper model for classification of coronary artery. The experimental results on public data set sho that the proposed method is comparable at both accuracy and running time to the state-of-the-art methods.

Analysis of Land Cover Classification and Pattern Using Remote Sensing and Spatial Statistical Method - Focusing on the DMZ Region in Gangwon-Do - (원격탐사와 공간통계 기법을 이용한 토지피복 분류 및 패턴 분석 - 강원도 DMZ일원을 대상으로 -)

  • NA, Hyun-Sup;PARK, Jeong-Mook;LEE, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.100-118
    • /
    • 2015
  • This study established a land-cover classification method on objects using satellite images, and figured out distributional patterns of land cover according to categories through spatial statistics techniques. Object-based classification generated each land cover classification map by spectral information, texture information, and the combination of the two. Through assessment of accuracy, we selected optimum land cover classification map. Also, to figure out spatial distribution pattern of land cover according to categories, we analyzed hot spots and quantified them. Optimal weight for an object-based classification has been selected as the Scale 52, Shape 0.4, Color 0.6, Compactness 0.5, Smoothness 0.5. In case of using the combination of spectral information and texture information, the land cover classification map showed the best overall classification accuracy. Particularly in case of dry fields, protected cultivation, and bare lands, the accuracy has increased about 12 percent more than when we used only spectral information. Forest, paddy fields, transportation facilities, grasslands, dry fields, bare lands, buildings, water and protected cultivation in order of the higher area ratio of DMZ according to categories. Particularly, dry field sand transportation facilities in Yanggu occurred mainly in north areas of the civilian control line. dry fields in Cheorwon, forest and transportation facilities in Inje fulfilled actively in south areas of the civilian control line. In case of distributional patterns according to categories, hot spot of paddy fields, dry fields and protected cultivation, which is related to agriculture, was distributed intensively in plains of Yanggu and in basin areas of Cheorwon. Hot spot areas of bare lands, waters, buildings and roads have similar distribution patterns with hot spot areas related to agriculture, while hot spot areas of bare lands, water, buildings and roads have different distributional patterns with hot spot areas of forest and grasslands.