• Title/Summary/Keyword: optimal boundary

Search Result 615, Processing Time 0.03 seconds

An Optimal Boundary Shape for Class-Based Storage Assignment Policy in Automated Storage/Retrieval Systems (자동 입출고 시스템에서 계급 할당규칙에 대한 최적 경계모양)

  • Hwang, Hark;Ha, Jae-Won
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.16 no.1
    • /
    • pp.99-106
    • /
    • 1990
  • With two-class-based storage assignment policy and dual command cycle in Automated Storage/Retrieval Systems(AS/RS), the problem of determining the region dedicated for class-one item is considered. First, the expected travel time of the S/R machine is derived when the boundary of the class-one region is square. Secondly, a heuristic procedure is proposed which determines sequentially the class-one region in a discrete rack. An application of the procedure generates leaf shape region which confirms that the L-shape partition is not necessarily optimal.

  • PDF

Shape Optimization of High Voltage Gas Circuit Breaker Using Kriging-Based Model And Genetic Algorithm (크리깅 메타모델과 유전자 알고리즘을 이용한 초고압 가스차단기의 형상 최적 설계)

  • Kwak, Chang-Seob;Kim, Hong-Kyu;Cha, Jeong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.177-183
    • /
    • 2013
  • We describe a new method for selecting design variables for shape optimization of high-voltage gas circuit breaker using a Kriging meta-model and a genetic algorithm. Firstly we sample balance design variables using the Latin Hypercube Sampling. Secondly, we build meta-model using the Kriging. Thirdly, we search the optimal design variables using a genetic algorithm. To obtain the more exact design variable, we adopt the boundary shifting method. With the proposed optimization frame, we can get the improved interruption design and reduce the design time by 80%. We applied the proposed method to the optimization of multivariate optimization problems as well as shape optimization of a high - voltage gas circuit breaker.

Optimal Control of Nonlinear Systems Using The New Integral Operational Matrix of Block Pulse Functions (새로운 블럭펄스 적분연산행렬을 이용한 비선형계 최적제어)

  • Cho Young-ho;Shim Jae-sun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.198-204
    • /
    • 2003
  • In this paper, we presented a new algebraic iterative algorithm for the optimal control of the nonlinear systems. The algorithm is based on two steps. The first step transforms nonlinear optimal control problem into a sequence of linear optimal control problem using the quasilinearization method. In the second step, TPBCP(two point boundary condition problem) is solved by algebraic equations instead of differential equations using the new integral operational matrix of BPF(block pulse functions). The proposed algorithm is simple and efficient in computation for the optimal control of nonlinear systems and is less error value than that by the conventional matrix. In computer simulation, the algorithm was verified through the optimal control design of synchronous machine connected to an infinite bus.

A New Algorithm to Calculate the Optimal Inclination Angle for Filling of Plunge-milling

  • Tawfik, Hamdy
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.193-198
    • /
    • 2006
  • Plunge milling is the fastest way to mill away large volumes of metal in the axial direction. The residual volume (inaccessible volume by the plungers) is minimized when selecting a specific direction of filling. This direction is known as the optimal inclination angle for filling of the plunged area. This paper proposes a new algorithm to calculate the optimal inclination angle of filling and to fill the plunged area with multi-plungers sizes. The proposed algorithm uses the geometry of the 2D area of the shape that being cutting to estimate the optimal inclination angle of filling. It is found that, the optimal inclination angle for filling of the plunged area is the same direction as the longer width of the equivalent convex polygon of the boundary contour. The results of the tested examples show that, the residual volume is minimized when comparing the proposed algorithm with the previous method.

Linear quadratic control problem of delay differential equation

  • Shim, Jaedong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.208-213
    • /
    • 1992
  • In this paper we are concerned with optimal control problems whose costs am quadratic and whose states are governed by linear delay equations and general boundary conditions. The basic new idea of this paper is to Introduce a new class of linear operators in such a way that the state equation subject to a starting function can be viewed as an inhomogeneous boundary value problem in the new linear operator equation. In this way we avoid the usual semigroup theory treatment to the problem and use only linear operator theory.

  • PDF

On the Optimal Control in the Linear Time Invariant System with non Terminal Boundary Conditions

  • Lee, Bong-Jin
    • Nuclear Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.214-222
    • /
    • 1973
  • The linear sequence method is expanded in such a way that it may be applied to the boundary problem with non terminal state condition and its possibility under the existence of a corresponding costate vector P(t) is found. For an application a couple of the concrete physical models are illustrated and examined the effect of the sequence.

  • PDF

The Optimal Resolution for Circle Analysis with the Minimum Error (최소 오차 원 해석을 위한 최적 해상도에 관한 연구)

  • 김태현;문영식;한창수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.55-62
    • /
    • 2000
  • In this paper, an algorithm for determining the optimal resolution has been described for measuring the actual length of circular objects. As the resolution gets higher, the measurement error in general becomes smaller because of the reduced distance per pixel. However, the higher resolution makes circular objects enlarged, which may produce an ill-conditioned system. That is, a small error in the boundary positions may result in a large error in the analysis of the circular objects. Taking this fact into account, a new measure is proposed to determine the optimal resolution. The actual errors have been calculated with various resolutions and the resolution with the minimum error has been decided as the optimal resolution. The analysis using various circles with different sizes indicates that the minimum measurement error is obtained when the whole circle appears in the screen as large as possible, regardless of the size of circle. The experimental results using real images have verified the validity of our analysis.

  • PDF

Hierarchical Optimal Control of Non-linear Systems using Fast Walsh Transform (FWT를 이용한 비선형계의 계층별 최적제어)

  • Jeong, Je-Uk;Jo, Yeong-Ho;Im, Guk-Hyeon;An, Du-Su
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.415-422
    • /
    • 2000
  • This paper presents a new algorithm for hierarchical optimal control of nonlinear systems. The proposed method is simple because the solutions are obtained by only exchanging informations of coefficient vector based on interaction prediction principle and FWT(fast Walsh transform) in upper and lower level. Since we solve two point boundary problem with Picard's iterative method and the backward integral operational matrix of Walsh function to obtain the optimal vector of each independent subsystem, the algorithm is simple and its operation is fast without inverse matrix and kronecker product operation. In simulation, the proposed algorithm's usefulness is proved by comparison with the global optimal control methods.

  • PDF