• Title/Summary/Keyword: optical sensors

Search Result 1,135, Processing Time 0.028 seconds

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Song, Yoon-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1100-1109
    • /
    • 2006
  • In this study, two different technologies which can measure temperature simultaneously at many points are introduced. One is to use a thermal sensor cable that is comprised of addressable thermal sensors connected in parallel within a single cable. The other is to use an optic fiber with Distributed Temperature Sensing (DTS) system. The difference between two technologies can be summarized as follows. A thermal sensor cable has a concept of 'point sensing' that can measure temperature at accurate position of a thermal sensor. So the accuracy and resolution of temperature measurement are up to the ability of the thermal sensor. Whereas optic fiber sensor has a concept of 'distributed sensing' because temperature is measured by ratio of Stokes and anti-Stokes component intensities of Raman backscatter that is generated when laser pulse travels along an optic fiber. It's resolution is determined by measuring distance, measuring time and spatial resolution. The purpose of this study is that application targets of two temperature measurement techniques are checked in technical and economical phases by examining the strength and weakness of them. Considering the functions and characteristics of two techniques, the thermal sensor cable will be suitable to apply to the assessment of groundwater flow, geothermal distribution and grouting efficiency within 300m distance. It is expected that the optic fiber sensor can be widely utilized at various fields (for example: pipe line inspection, tunnel fire detection, power line monitoring etc.) which need an information of temperature distribution over relatively long distance.

  • PDF

Fabrication and Characteristics of Photoconductive Amorphous Silicon Film for Facsimile (팩시밀리용 비정질 실리콘 광도전막의 제작 및 특성)

  • Kim, Jeong-Seob;Oh, Sang-Kwang;Kim, Ki-Wan;Lee, Wu-Il
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.48-56
    • /
    • 1989
  • Contact-type linear image sensors for facsimile have been fabricated by means of rf glow discharge decomposition method of silane. The dependence of their electrical and optical properties on rf power, $SiH_4$ flow rate, ambient gas pressure, $H_2SiH_4$ ratio and substrate temperature are described. The a-Si:H monolayer demonstriated photosensitivity of 0.85 and $I_{ph}/I_d$ ratio of 100 unger 100 lux illumination. However, this monolayer has relatively high dark current due to carrier injection from both electrodes, resulting in low $I_{ph}/I_{dd}$ ratio. To suppress the dark current we have fabricated $SiO_2/i-a-Si:H/p-a-Si:H:B$ multilayer film with blocking structure. The photocurrent of this multilayer sensor with 6 V bias became saturated ar about 20nA under 10 lux illumination, while the dark current was less than 0.2 nA. Moreover, the spectral sensitivity of the multilayer film was enhanced for short wavelength visible region, compared with that of the a-Si:H monolayer. These results show that the fabricated photocon-ductive film can be used as the linear image sensor of the facsimile.

  • PDF

The study on Low-cost Position Sensor by a Single Opto-coupler for BLDC Drive (BLDC 구동을 위한 단일 옵토 카플러에 의한 저가형 위치센서에 관한 연구)

  • Kwon, Soon-Jae;Kim, Young-Su
    • Journal of Power System Engineering
    • /
    • v.20 no.3
    • /
    • pp.22-28
    • /
    • 2016
  • Energy consumption rapidly increases with industrial development. therefore an interest in the efficiency of various power converters is increasing. Especially, the field of high-efficiency small motors widely distributed for industrial and family use is considered a very important field in terms of efficient energy usage, and accordingly, in the field of small electric equipment, the use of BLDC that allows high-efficiency drive in an inductor gradually increases. However, for the BLDC drive, information on the position of the rotor is essential. Both methods using a magnetic encoder and an optical encoder to detect the information on the position of the rotor obtain the information by three position sensitive devices, and if any one of these position sensitive devices fails to function, no positional information can be obtained, so there is a limitation in implementing a position sensor with high reliability. In the paper, proposes a new type of encoder that can obtain the positional information on the position of the rotor using a single position sensor in order to overcome the issues that it has to use numerous signal flows and that the reliability is reduced for the acquisition of positional information generated by using multiple position detectors. The encoder in the proposed method replaced the function of generating positional information from multiple sensors with the shape of the encoder plate and the capture function of MICOM. In order to verify the validity of the position detection technique by the proposed encoder, a prototype was produced, and an experiment using the capture function of DSP was conducted through this.

Kalman Filter for Estimation of Sensor Acceleration Using Six-axis Inertial Sensor (6축 관성센서를 이용한 센서가속도 추정용 칼만필터)

  • Lee, Jung Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.179-185
    • /
    • 2015
  • Although an accelerometer is a sensor that measures acceleration, it cannot be used by itself to measure the acceleration when the orientation of the sensor changes. This paper introduces a Kalman filter for the estimation of a sensor acceleration based on a six-axis inertial sensor (i.e., a three-axis accelerometer and three-axis gyroscope). The novelty of the proposed Kalman filter lies in the fact that its state vector includes not only the tilt angle variable but also the sensor acceleration. Thus, the filter can explicitly estimate the latter with a high accuracy. The accuracy of acceleration estimates were validated experimentally under three different dynamic conditions, using an optical motion capture system. It could be concluded that the performance of the proposed Kalman filter was comparable to that of the state-of-the-art estimation algorithm employed by the Xsens MTw. The proposed algorithm may be more suitable than inertial/magnetic sensor-based algorithms for various applications adopting six-axis inertial sensors.

The Application of Micro Controller Board to Engineering Education for Multidisciplinary Capstone Design (한국다학제간 캡스톤디자인에 마이크로콘트롤러 보드의 적용)

  • Yoon, Seok-Beom;Jang, Eun-Young
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.531-537
    • /
    • 2014
  • In this paper, we introduce a model of the teaching and learning method for multidisciplinary convergence capstone design at Kongju National University's Engineering Department. At Kongju national University, various capstone design works are designed and proceeded by multidisciplinary students at the summer session. The multidisciplinary approach described in this paper includes the involvement of five department's student who have not collaborated in capstone design experience. This study focuses on multidisciplinary capstone design education by using the micro controller board called Arduino Uno that consists of an assortment of sensors and actuators. The result of self-satisfaction survey was shown the meaningful teaching process for the engineering department students who could have more creative and industrial experiences. As a result, we are able to get the result of the possible directions for future technology education in the area of convergence multidisciplinary capstone design.

Fiber Bragg grating sensor using polarization-maintaining fiber (편광 유지 광섬유를 이용한 Bragg Grating 센서 제작)

  • 김철진;박태상;이상배;최상삼;정해양
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.415-419
    • /
    • 1997
  • A novel fiber optic sensor is demonstrated using a FBG in PM(Polarization-Maintaining) fiber. Gratings have been written in a Bow-Tie type fiber using the phase mask. The operation of the sensor simply involves monitoring back-reflected Bragg wavelengths from the grating. Since PM fiber has two principal semi-axes with two indices of refraction, two Bragg wavelengths were observed. We have observed the position of Bragg wavelengths for PM FBG shifted simultaneously by either applying the longitudinal strain or temperature change. The wavelength sensitivity of 1.2pm/$\mu$$\varepsilon$ about a longitudinal strain and the wavelength sensitivity of 11.4pm/$^{\circ}C$ about a temperature have been experimentally achieved. The wavelength sensitivity of both longitudinal strain and temperature are approximately same with the reported values for the single mode FBG. On the other hand, the change of separation between Bragg wavelengths was observed by the applying transverse stress. We observed that the separation between two Bragg wavelengths is proportional to the applied transverse stress. The wavelength sensitivity of 14.6 pm/N about a transverse stress has been achieved. We have demonstrated PM FBG sensors can measure the transverse stress independently from the effects of temperature.

  • PDF

Field Probe Sensor Based on the Electro-Optic Effect (전기광학효과를 이용한 전계 프로브 센서)

  • Kyoung, Un-Hwan;Kim, Gun-Duk;Eo, Yun-Seong;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.71-75
    • /
    • 2009
  • A compact electric field probe sensor incorporating two different electro-optic materials of $LiNbO_3$ and GaAs was proposed and fabricated, and it was used to measure the strength of the horizontal and vertical fields generated by a microstrip ring-resonator filter. The sensitivities of the sensors in $LiNbO_3$ and GaAs were $9.315{\mu}V/\sqrt{Hz}$ and ${\sim}49.346{\mu}V/\sqrt{Hz}$ respectively, and their signal to noise ratios were approximately ${\sim}50\;dB$ and ${\sim}40\;dB$ respectively. And the operating frequency range was up to ${\sim}1.2\;GHz$. The electric field profile for the test circuit was scanned and found to be in good agreement with that obtained by using the HFSS simulation.

Analysis of the Digital Phase Tracking Technique for Fiber-Optic Gyroscope (광섬유 자이로스코프의 위상추적 신호처리 분석)

  • Yeh, Y.H.;Cho, S.M.;Kim, J.H.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.95-105
    • /
    • 1997
  • A new open-loop signal processing technique of digital phase tracking is known to have a Potential to solve the problems in the open-loop processor such as limited dynamic range, dependence on the optical intensity fluctuations, and dependence on gain fluctuations of signal path. But new problems with digital phase tracking must be solved before it can be a useful signal processing method. In this paper, barriers to the success of the digital phase tracking such as harmonics content, phase difference, amplitude variations of the phase modulation(PM) signal, bandwidth limit of the signal path, and the implementation of the mixer, are pointed out and their effects on the performance of the signal processor are analyzed to calculate the requirements of the signal processor for $1{\mu}rad$-grade FOG.

  • PDF

Effect of process parameters of antimony doped tin oxide films prepared on flexible substrate at room temperature

  • Lee, Seong-Uk;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.175-175
    • /
    • 2010
  • Transparent conducting oxide (TCO) films are widely used as transparent conducting thin film material for application in various fields such as solar cells, optoelectronic devices, heat mirrors and gas sensors, etc. Recently the increased utilization of many transparent electrodes has accelerated the development of inexpensive TCO materials. Indium tin oxide (ITO) film is well-known for TCO materials because of its low resistivity, but there is disadvantage that it is too expensive. ZnO film is cheaper than ITO but it shows thermally poor stability. On the contrary, antimony-doped tin oxide films (ATO) are more stable than TCO films such as Al-doped zinc oxide (AZO) and ITO. Moreover, SnO2 film shows the best thermal and chemical stability, low cost and mechanical durability except the poor conductivity. However, annealing is proved to improve the conductivity of ATO film. Therefore, in this work, antimony (6 wt%) doped tin oxide films to improve the conductivity were deposited on 7059 corning glass by RF magnetron sputtering method for the application to transparent electrodes. In general, of all TCO films, glass is the most commonly selected substrate. However, for future development in flexible devices, glass is limited by its intrinsic inflexibility. In this study, we report the growth and properties of antimony doped tin oxide (ATO) films deposited on PES flexible substrate by using RF magnetron sputtering. The optimization process was performed varying the sputtering parameters, such as RF power and working pressure, and parameter effect on the structural, electrical and optical properties of the ATO films were investigated.

  • PDF

Characterization of Hydrogen Gas Sensitivity of ZnO Thin Films (고감도 ZnO 박막센서의 수소가스 검출 특성 연구)

  • Kong, Young-Min;Lee, Hak-Min;Huh, Sung-Bo;Kim, Sun-Kwang;You, Yong-Zoo;Kim, Dae-Il
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.636-639
    • /
    • 2010
  • ZnO thin films were prepared on a glass substrate by radio frequency (RF) magnetron sputtering without intentional substrate heating and then surfaces of the ZnO films were irradiated with intense electrons in vacuum condition to investigate the effect of electron bombardment on crystallization, surface roughness, morphology and hydrogen gas sensitivity. In XRD pattern, as deposited ZnO films show a higher ZnO (002) peak intensity. However, the peak intensity for ZnO (002) is decreased with increase of electron bombarding energy. Atomic force microscope images show that surface morphology is also dependent on electron bombarding energy. The surface roughness increases due to intense electron bombardment as high as 2.7 nm. The observed optical transmittance means that the films irradiated with intense electron beams at 900 eV show lower transmittance than the others due to their rough surfaces. In addition, ZnO films irradiated by the electron beam at 900 eV show higher hydrogen gas sensitivity than the films that were electron beam irradiated at 450 eV. From XRD pattern and atomic force microscope observations, it is supposed that intense electron bombardment promotes a rough surface due to the intense bombardments and increased gas sensitivity of ZnO films for hydrogen gas. These results suggest that ZnO films irradiated with intense electron beams are promising for practical high performance hydrogen gas sensors.