• Title/Summary/Keyword: optical receiver circuit

Search Result 54, Processing Time 0.021 seconds

Design Optimization of Hybrid-Integrated 20-Gb/s Optical Receivers

  • Jung, Hyun-Yong;Youn, Jin-Sung;Choi, Woo-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.443-450
    • /
    • 2014
  • This paper presents a 20-Gb/s optical receiver circuit fabricated with standard 65-nm CMOS technology. Our receiver circuits are designed with consideration for parasitic inductance and capacitance due to bonding wires connecting the photodetector and the circuit realized separately. Such parasitic inductance and capacitance usually disturb the high-speed performance but, with careful circuit design, we achieve optimized wide and flat response. The receiver circuit is composed of a transimpedance amplifier (TIA) with a DC-balancing buffer, a post amplifier (PA), and an output buffer. The TIA is designed in the shunt-feedback configuration with inductive peaking. The PA is composed of a 6-stage differential amplifier having interleaved active feedback. The receiver circuit is mounted on a FR4 PCB and wire-bonded to an equivalent circuit that emulates a photodetector. The measured transimpedance gain and 3-dB bandwidth of our optical receiver circuit is 84 $dB{\Omega}$ and 12 GHz, respectively. 20-Gb/s $2^{31}-1$ electrical pseudo-random bit sequence data are successfully received with the bit-error rate less than $10^{-12}$. The receiver circuit has chip area of $0.5mm{\times}0.44mm$ and it consumes excluding the output buffer 84 mW with 1.2-V supply voltage.

Design of the Clock Recovery Circuit for a 40 Gb/s Optical Receiver (40 Gb/s 광통신 수신기용 클락 복원 회로 설계)

  • Park, Chan-Ho;Woo, Dong-Sik;Kim, Kang-Wook
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.136-139
    • /
    • 2003
  • A clock recovery circuit for a 40 Gb/s optical receiver has been designed and implemented. The clock recovery circuit consists of signal amplifiers, a nonlinear circuit with diodes, and a bandpass filter Before implementing the 40 Gb/s clock recovery circuit, a 10 Gb/s clock recovery circuit has been successfully implemented and tested. With the 40 Gb/s clock recovery circuit, when a 40 Gb/s NRZ signal of -10 dBm was applied to the input of the circuit, the 40 GHz clock was recovered with the -20 dBm output power after passing through the nonlinear circuit. The output signal from the nonlinear circuit passes through a narrow-band filter, and then amplified. The implemented clock recovery circuit is planned to be used for the input of a phase locked loop to further stabilize the recovered clock signal and to reduce the clock jitter.

  • PDF

Design of Optical Receiver with CDR using Delayed Data Topology (데이터 지연방식의 CDR을 이용한 광 송신기 설계)

  • Kim, Kyung-Min;Kang, Hyung-Won;Choi, Young-Wan
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.154-158
    • /
    • 2005
  • In this paper, we design optical receiver composed of CDR(clock and data recovery), SA(sense amp), TIA(transimpe dence amplifier), and decision circuit. The optical receiver can be classified to two main block, one is Deserializer composed of CDR and SA, another is PD receiver composed of preamplifier(샴), peak detector, etc. In this paper, we propose CDR using delayed data topology that could improve defects of existing CDR. The optical receiver that is proposed in this paper has the role of translation a 1.25 Gb/s optical signal to $10{\times}125 Mb/s$ array electric signals. This optical receiver is verified by simulator(hspice) using 0.35 um CMOS technology.

  • PDF

10Gbps Optical Receiver Module using a novel TO Package (TO 패키지를 사용한 10Gbps 광수신기 모듈)

  • 구자남;조성문;송일종;장동훈;윤응률;원종화
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.11a
    • /
    • pp.184-185
    • /
    • 2002
  • We discussed the main issues of 10GHz Receiver packaging. High frequency structure simulations and circuit simulations for TO-CANs led to a new design for 10GHz optical receiver module packaging. The simulation results were compared to the measured laboratory data. The proposed package has low cost and easy manufacture process far mass production. Using this package, we had a good optical to electrical conversion (OE) characteristic at a data rate of 10Gbps.

  • PDF

A Power-adjustable Fully-integrated CMOS Optical Receiver for Multi-rate Applications

  • Park, Kangyeob;Yoon, Eun-Jung;Oh, Won-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.623-627
    • /
    • 2016
  • A power-adjustable fully-integrated CMOS optical receiver with multi-rate clock-and-data recovery circuit is presented in standard 65-nm CMOS technology. With supply voltage scaling, key features of the optical receiver such as bandwidth, power efficiency, and optical sensitivity can be automatically optimized according to the bit rates. The prototype receiver has −23.7 dBm to −15.4 dBm of optical sensitivity for 10−9 bit error rate with constant conversion gain around all target bit rates from 1.62Gbps to 8.1 Gbps. Power efficiency is less than 9.3 pJ/bit over all operating ranges.

Design of the Clock Recovery Circuit for a 40 Gb/s Optical Receiver (40 Gb/s 광통신 수신기용 클락 복원 회로 설계)

  • 박찬호;우동식;김강욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.134-139
    • /
    • 2004
  • A clock recovery circuit for a 40 Gb/s optical receiver has been designed and implemented. The clock recovery circuit consists of pre-amplifiers, a nonlinear circuit with diodes, a bandpass filter and a clock amplifier. Before implementing the 40 Gb/s clock recovery circuit, a 10 Gb/s clock recovery circuit has been successfully implemented and tested. With the 40 Gb/s clock recovery circuit, when a 40 Gb/s signal of -10 dBm was applied to the input of the circuit, the 40 GHz clock was recovered with the -20 dBm output power after passing through the nonlinear circuit. The output signal from the nonlinear circuit passes through a narrow-band filter, and then amplified. The implemented clock recovery circuit is planned to be used for the input of a phase locked loop to further stabilize the recovered clock signal and to reduce the clock jitter.

Design of CMOS Optical Link Receiver for FTTH (FTTH용 CMOS Optical Link Receiver의 설계)

  • Kim Kyu-Chull
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.47-52
    • /
    • 2004
  • This paper presents a CMOS optical receiver design featuring wide input dynamic range and low bit error rate suitable for FTTH application. We achieved 60dB input dynamic range for up to 100Mbps by controlling the PMOS feedback resistance of transimpedance preamplifier according to its output signal level. Auto-bias circuit is designed in current mirror configuration to minimize duty error. Circuit simulation has been performed using 2-poly, 3-metal, 0.6um CMOS process parameters. The designed receiver consumes less than 130mW at 100Mbps with 5V power supply.

Design of clock/data recovery circuit for optical communication receiver (광통신 수신기용 클럭/데이타 복구회로 설계)

  • Lee, Jung-Bong;Kim, Sung-Hwan;Choi, Pyung
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.11
    • /
    • pp.1-9
    • /
    • 1996
  • In the following paper, new architectural algorithm of clock and data recovery circuit is proposed for 622.08 Mbps optical communication receiver. New algorithm makes use of charge pump PLL using voltage controlled ring oscillator and extracts 8-channel 77.76 MHz clock signals, which are delayed by i/8 (i=1,2, ...8), to convert and recover 8-channel parallel data from 662.08 Mbps MRZ serial data. This circuit includes clock genration block to produce clock signals continuously even if input data doesn't exist. And synchronization of data and clock is doen by the method which compares 1/2 bit delayed onput data and decided dta by extracted clock signals. Thus, we can stabilize frequency and phase of clock signal even if input data is distorted or doesn't exist and simplify receiver architecture compared to traditional receiver's. Also it is possible ot realize clock extraction, data decision and conversion simulataneously. Verification of this algorithm is executed by DESIGN CENTER (version 6.1) using test models which are modelized by analog behavior modeling and digital circuit model, modified to process input frequency sufficiently, in SPICE.

  • PDF

A Cost-Effective 40-Gb/s ROSA Module Employing Compact TO-CAN Package

  • Kang, Sae-Kyoung;Lee, Joon Ki;Huh, Joon Young;Lee, Jyung Chan;Kim, Kwangjoon;Lee, Jonghyun
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • In this paper, we present an implemented serial 40-Gb/s receiver optical subassembly (ROSA) module by employing a proposed TO-CAN package and flexible printed circuit board (FPCB). The TO-CAN package employs an L-shaped metal support to provide a straight line signal path between the TO-CAN package and the FPCB. In addition, the FPCB incorporates a signal line with an open stub to alleviate signal distortion owing to an impedance mismatch generated from the soldering pad attached to the main circuit board. The receiver sensitivity of the ROSA module measures below -9 dBm for 40 Gb/s at an extinction ratio of 7 dB and a bit error rate of $10^{-12}$.