• Title/Summary/Keyword: optical power splitter

Search Result 29, Processing Time 0.02 seconds

Design of optical power splitters and couplers composed of deeply etched multimode interference section (깊이 식각된 다중모드 간섭 영역으로 구성된 광전력 분배기 및 결합기의 설계)

  • 김정욱;정영철
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.62-72
    • /
    • 1997
  • The optical power splitter/couplers based on MMI(multimode interference) in GaAs/AlGaAs are studied. We presetn a design of optical power splitter/couplers, which have deeply etched multimode waveguide. The properties and fabrication tolerance on the etching depth, multimode waveguide width are simulatedusing a FD-BPM (finite difference beam propgation method). Proposed 1*N optical of designed device is 0.7dB smaller than the optical power splitter with a shallowly etched MMI section. For 0.5dB excess loss, the predicted fabrication tolerance is 0.6.mu.m on the multimode waveguide width of the 14 optical power splitter with a deeply etched MMI section. Also excess loss and uniformity of poposed 32*32 optical power coupler are below 0.3dB. The excess loss of proposed 32*32 optical power coupler is 2dB smaller than the optical power coupler with a shallowly etched MMI section. It is shown that the optical power splitters/couplers with a deeply etched mMI section have low loss, good uniformity, and improved fabriction tolerance.

  • PDF

Fabrication of multi-mode interference $1\times4$ optical power splitter using glass integrated optics (유리집적광학을 이용한 다중모드간섭 $1\times4$ 광파워 분리기 제작)

  • 강동성;전금수;장명호;반재경
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.418-422
    • /
    • 2000
  • In this paper, we have modeled and fabricated a mutimode interference (MMI) $1\times4$ optical power splitter using finite-difference beam propagation method and $Ag^+-Na^+$ ion-exchanged method in BK7 glass. The power splitting ratio of the fabricated MMI $1\times4$ optical power splitter shows 0.46 dB..46 dB.

  • PDF

Gold Shell Nanocluster Networks in Designing Four-Branch (1×4) Y-Shape Optical Power Splitters

  • Ahmadivand, Arash;Golmohammadi, Saeed
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.274-282
    • /
    • 2014
  • In this study, closely spaced Au nanoparticles which are arranged in nanocluster (heptamer) configurations have been employed to design efficient plasmonic subwavelength devices to function at the telecommunication spectrum (${\lambda}$~1550 nm). Utilizing two kinds of nanoparticles, the optical properties of heptamer clusters composed of Au rod and shell particles that are oriented in triphenylene molecular fashion have been investigated numerically, and the cross-sectional profiles of the scattering and absorption of the optical power have been calculated based on a finite-difference time-domain (FDTD) method. Plasmon hybridization theory has been utilized as a theoretical approach to characterize the features and properties of the adjacent and mutual heptamer clusters. Using these given nanostructures, we designed a complex four-branch ($1{\times}4$) Y-shape splitter that is able to work at the near infrared region (NIR). This splitter divides and transmits the magnetic plasmon mode along the mutual heptamers arrays. Besides, as an important and crucial parameter, we studied the impact of arm spacing (offset distance) on the guiding and dividing of the magnetic plasmon resonance propagation and by calculating the ratio of transported power in both nanorod and nanoshell-based structures. Finally, we have presented the optimal structure, that is the four-branch Y-splitter based on shell heptamers which yields the power ratio of 23.9% at each branch, 4.4 ${\mu}m$ decaying length, and 1450 nm offset distance. These results pave the way toward the use of nanoparticles clusters in molecular fashions in designing various efficient devices that are able to be efficient at NIR.

Vector analysis for multimode-interference power splitter with an arbitrary splitting ratio (임의 분배 비율의 다중모드간섭 광전력 분배기에 대한 벡터 해석법)

  • 김진희;이상선;송석호
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.479-485
    • /
    • 2002
  • We propose a vector analysis for designing multimode-interference power splitters, which can show an arbitrary splitting ratio. Power splitting is a fundamental characteristic in integrated optical circuits and its value would be multiplied for many applications if the splitting ratio could be selected freely. Since the vector analysis utilizes a graphical method based on the previously-reported mathematical results of multimode interference, it shows an excellent advantage especially for designing power splitters with an arbitrary splitting ratio.

Analysis of optical splitters in photonic crystals (광자 크리스탈로 구성된 광 분배기의 특성 연구)

  • 윤지수;정교방
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.27-31
    • /
    • 2002
  • We design a 1$\times$4 optical splitter made of photonic crystal waveguides and analyze the properties of the optical splitter using the finite-difference time-domain method with perfectly-matched-layer absorbing boundaries. The photonic crystal is constructed from cylindrical rods in air on a square lattice. Our simulation results show that there are different transmission properties for four bend geometries and different incident-wave frequencies. The sum of the power transmission of the splitted light is over 93 percent at a certain geometry and frequency, and the incident power splits in the four arms with almost the same ratio.

Design and Fabrication of a Polarization-Independent 1 ${\times}$ 8 InGaAsP/InP MMI Optical Splitter (편광에 무관한 1 ${\times}$ 8 InGaAsP/InP 다중모드간섭 광분배기의 설계 및 제작)

  • Yu, Jae-Su;Moon, Jeong-Yi;Bae, Seong-Ju;Lee, Yong-Tak
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.28-29
    • /
    • 2000
  • Optical power splitters and/or couplers are important components for optical signal distribution between channels both in wavelength division multiplexing(WDM) systems and photonic integrated circuits(PICs). Since polarization is usually not known after propagation in an optical fiber, passive WDM components have to be polarization insensitivity, Compared to alternatives such as directional couplers or Y-junction splitters, splitters based on multimode interference(MMI) have found a growing interest in recent yens because of their desirable characteristics, such as compact size, low excess loss, wide bandwidth, polarization independence, and relaxed fabrication tolerances$^{(1)}$ . These devices have been fabricated in polymers, silica, or III-V semiconductor materials. A1 $\times$ 4 MMI power splitter on InP materials that were suitable for application in the 1.55-${\mu}{\textrm}{m}$ region$^{(2)}$ . However, the fabrication process of the structure is too complicated and the photolithography tolerance is very tight. Also, a 1 $\times$ 16 InGaAsP/InP MMI power splitter with an excess loss of 2.2dB and a splitting ratio of 1.5dB was demonstrated by using deep etching$^{(3)}$ . The deep etching of the sidewalls through the entire guide layer of the slab waveguide resulted in a number of drawbacks$^{(4)}$ . (omitted)

  • PDF

Design of Thin solid Film Systems for Nd High Power Laser and Sol-gel Coating Experiment

  • Kim, Hyeon-Soo
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.49-54
    • /
    • 1989
  • Thin solid film systems polarizing beam splitter and disk amplifier used in the high power laser system ({{{{ lambda }}0=1060nm) are designed by computer aided optimization technique. Extinction ratio of designed polarizing beam splitter for incidence angle 30$^{\circ}$, 45$^{\circ}$, 55.60$^{\circ}$ are 1:93, 1:895, 1:1991. respectively. Maximum reflectance of designed thin film system of disk amplifier is less than 3% for pumping band (500-900nm) and 0.15% for laser beam. Further, SiO film chosen as one of the suitable thin films in the high power laser system is prepared by the sol=-gel process which gives high damage threshold. When the withdrawal speed is 6.15cm/min -16.62 cm/min and the mixing ratio is in the range of 1 mol (ethylsilicate): 4-8mol(ethylalcohol) : 2mol(water), the thickness of deposited film is in the range of 500{{{{ ANGSTROM }}-1500{{{{ ANGSTROM }}.

  • PDF

Laser Diode Output Stabilization by Optical feedback (Optical Feedback 방식에 의한 Laser Diode의 출력 안정화)

  • Jeong, Ui-Jin;Lee, Seong-Eun;Gang, Min-Ho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.6
    • /
    • pp.72-77
    • /
    • 1980
  • We analyze several problems concerning the operation of the optical feedback prebias control scheme in the loser diode optical transmitter and present a LD simulation circuit as a way of adjusting the component's optimum value without using the Laser - triode. 1.5% light power decrease was observed between the temperature range of $0^{\circ}C$ and 36$^{\circ}C$ in which the total light power of LD was used for feedback loop and fairly good operation was demonstrated when a star coupler was employed as a beamsplitter by which approximately 1% portion of the light power was feedbacked.

  • PDF