DOI QR코드

DOI QR Code

Gold Shell Nanocluster Networks in Designing Four-Branch (1×4) Y-Shape Optical Power Splitters

  • Ahmadivand, Arash (Department of Electrical Engineering, Ahar Branch, Islamic Azad University) ;
  • Golmohammadi, Saeed (School of Engineering-Emerging Technologies, University of Tabriz)
  • Received : 2014.02.26
  • Accepted : 2014.05.29
  • Published : 2014.06.25

Abstract

In this study, closely spaced Au nanoparticles which are arranged in nanocluster (heptamer) configurations have been employed to design efficient plasmonic subwavelength devices to function at the telecommunication spectrum (${\lambda}$~1550 nm). Utilizing two kinds of nanoparticles, the optical properties of heptamer clusters composed of Au rod and shell particles that are oriented in triphenylene molecular fashion have been investigated numerically, and the cross-sectional profiles of the scattering and absorption of the optical power have been calculated based on a finite-difference time-domain (FDTD) method. Plasmon hybridization theory has been utilized as a theoretical approach to characterize the features and properties of the adjacent and mutual heptamer clusters. Using these given nanostructures, we designed a complex four-branch ($1{\times}4$) Y-shape splitter that is able to work at the near infrared region (NIR). This splitter divides and transmits the magnetic plasmon mode along the mutual heptamers arrays. Besides, as an important and crucial parameter, we studied the impact of arm spacing (offset distance) on the guiding and dividing of the magnetic plasmon resonance propagation and by calculating the ratio of transported power in both nanorod and nanoshell-based structures. Finally, we have presented the optimal structure, that is the four-branch Y-splitter based on shell heptamers which yields the power ratio of 23.9% at each branch, 4.4 ${\mu}m$ decaying length, and 1450 nm offset distance. These results pave the way toward the use of nanoparticles clusters in molecular fashions in designing various efficient devices that are able to be efficient at NIR.

Keywords

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, Germany, 1988).
  2. B. E. A. Saleh and M. C. Tiech, Fundamentals of Photonics (Wiley & Sons, New York, USA, 1991).
  3. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, Germany, 1995).
  4. C. F. Bohren and D. R. Huffman, Absorption, and Scattering of Light by Small Particles (Wiley & Sons, New York, USA, 1998).
  5. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, USA, 2007).
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon sub-wavelength optics," Nature 424, 824-830 (2003). https://doi.org/10.1038/nature01937
  7. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "Hybridization model for the plasmon resonance of complex nanostructures," Science 302, 419-422 (2003). https://doi.org/10.1126/science.1089171
  8. N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, and N. J. Halas, "Manipulating magnetic plasmon propagation in metallic nanocluster networks," ACS Nano 6, 5482-5488 (2002).
  9. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). https://doi.org/10.1126/science.1114849
  10. L. Chen, J. Shakya, and M. Lipson, "Subwavelength confinement in an integrated metal slot waveguide on silicon," Opt. Lett. 31, 2133-2135 (2006). https://doi.org/10.1364/OL.31.002133
  11. T. Holmgaard, S. I. Bozhenvolny, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, "Efficient excitation of dielectric loaded surface plasmon-polarition waveguide modes at telecommunication wavelength," Phys. Rev. B 78, 165431-165439 (2008). https://doi.org/10.1103/PhysRevB.78.165431
  12. K. Y. Jung, F. L. Tiexeria, and R. M. Reano, "$Au/SiO_2$ plasmon waveguides at optical communication band," J. Lightwave Technol. 9, 2757-2764 (2007).
  13. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B Condens. Mater. 62, R16356-R16359 (2000). https://doi.org/10.1103/PhysRevB.62.R16356
  14. S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Appl. Phys. Lett. 81, 1714-1716 (2002). https://doi.org/10.1063/1.1503870
  15. J. J. Xiao, J. P. Huang, and K. W. Yu, "Optical response of strongly coupled metal nanoparticles in dimer arrays," Phys. Rev. B Condens. Mater. 71, 045404-045412 (2005). https://doi.org/10.1103/PhysRevB.71.045404
  16. P. K. Jian and M. A. El-Sayed, "Noble metal nanoparticle pairs: Effect of medium for enhanced nanosensing," Nano Lett. 8, 4347-4352 (2008). https://doi.org/10.1021/nl8021835
  17. A. L. Fructos, S. Campione, F. Capolino, and F. Mesa, "Characterization of complex plasmonic modes in twodimensional periodic arrays of metal nanospheres," J. Opt. Soc. Am. B 28, 1446-1458 (2011). https://doi.org/10.1364/JOSAB.28.001446
  18. D. W. Brandl, C. Oubre, and P. Nordlander, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899-903 (2004). https://doi.org/10.1021/nl049681c
  19. N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-37 (2008). https://doi.org/10.1038/nmat2072
  20. J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, "Self-assembled plasmonic nanoparticles clusters," Science 328, 1135-1138 (2010). https://doi.org/10.1126/science.1187949
  21. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, "Transition from isolated to collective modes in plasmonics oligomers," Nano Lett. 10, 2721-2726 (2010). https://doi.org/10.1021/nl101938p
  22. A. Artar, A. A. Yanik, and H. Altug, "Multispectral plasmon induced transparency in coupled meta-atoms," Nano Lett. 11, 1685-1689 (2011). https://doi.org/10.1021/nl200197j
  23. A. Ahmadivand and S. Golmohammadi, "Comprehensive investigation of noble metal nanoparticles shape, size, and material on the optical response of optimal plasmonic Y-splitter waveguides," Opt. Commun. 310, 1-11 (2014). https://doi.org/10.1016/j.optcom.2013.07.059
  24. A. Ahmadivand, S. Golmohammadi, and A. Rostami, "T and Y-splitters based on an $Au/SiO_2$ nanoring chain at an optical communication band," Appl. Opt. 51, 2784-2793 (2012). https://doi.org/10.1364/AO.51.002784
  25. A. Ahmadivand, "Hybrid photonic-plasmonic polarization beam splitter (HPPPBS) based on metal-silica-silicon interactions," Opt. Laser Technol. 58, 145-150 (2014). https://doi.org/10.1016/j.optlastec.2013.11.008
  26. S. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006). https://doi.org/10.1038/nature04594
  27. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 19, 1501-1505 (2001).
  28. T R. Jesen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. V. Duyne, "Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays," J. Phys. Chem. B 103, 3854-3863 (1999).
  29. Y. Sun and Y. Xia, "Shape-controlled synthesis of gold and silver nanoparticles," Science 298, 2176-2179 (2002). https://doi.org/10.1126/science.1077229
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, USA, 1991).
  31. C. Johnathan, N. Greeves, S. Warren, and P. Wothers, Organic Chemistry (Oxford University Press, Oxford, 2001).
  32. S. Y. Ling, J. X. Qing, Y. J. Yi, T. Yi, and W. M. Hua, "Experimental demonstration of two-dimensional multimode interference optical power splitter," Chinese Phys. Lett. 20, 2128-2130 (2003).
  33. W. H. Zhen, Y. J. Zhong, L. Z. Li, Z. X. Feng, S. Wei, and F. C. Shui, "Silicon-on-insulator based 2${\times}$2 multimode interference coupler with large tolerance," Chinese Phys. Lett. 18, 245-247 (2000).
  34. S. D. Gendey, Introduction to the Finite-Difference Time- Domain (FDTD) Method for Electromagnetics (Morgan & Claypool, USA, 2010).
  35. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, USA, 2000).

Cited by

  1. Tailoring the negative-refractive-index metamaterials composed of semiconductor–metal–semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum vol.32, pp.2, 2015, https://doi.org/10.1364/JOSAA.32.000204