DOI QR코드

DOI QR Code

Enhanced Cathodoluminescence of KOH-treated InGaN/GaN LEDs with Deep Nano-Hole Arrays

  • Doan, Manh-Ha (Department of Electrical and Computer Engineering, Ajou University) ;
  • Lee, Jaejin (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2014.01.09
  • Accepted : 2014.05.07
  • Published : 2014.06.25

Abstract

Square lattice nano-hole arrays with diameters and periodicities of 200 and 500 nm, respectively, are fabricated on InGaN/GaN blue light emitting diodes (LEDs) using electron-beam lithography and inductively coupled plasma reactive ion etching processes. Cathodoluminescence (CL) investigations show that light emission intensity from the LEDs with the nano-hole arrays is enhanced compared to that from the planar sample. The CL intensity enhancement factor decreases when the nano-holes penetrate into the multiple quantum wells (MQWs) due to the plasma-induced damage and the residues. Wet chemical treatment using KOH solution is found to be an effective method for light extraction from the nano-patterned LEDs, especially, when the nano-holes penetrate into the MQWs. About 4-fold CL intensity enhancement factor is achieved by the KOH treatments after the dry etching for the sample with a 250-nm deep nano-hole array.

Keywords

References

  1. E. F. Schubert and J. K. Kim, "Solid-state light sources getting smart," Science 308, 1274-1278 (2005). https://doi.org/10.1126/science.1108712
  2. S. Nakamura, "Current status of GaN-based solid-state lighting," MRS Bulletin 34, 101-107 (2009). https://doi.org/10.1557/mrs2009.28
  3. P. Niu, Y. Li, X. Li, H. Liu, H. Tian, T. Gao, and G. Yang, "Enhancing the light extraction efficiency of GaN-based LEDs," Proc. SPIE 6828, 682811 (2007).
  4. A. N. Noemaun, F. W. Mont, G.-B. Lin, J. Cho, E. F. Schubert, G. B. Kim, C. Sone, and J. K. Kim, "Optically functional surface composed of patterned graded-refractiveindex coatings to enhance light-extraction of GaInN lightemitting diodes," J. Appl. Phys. 110, 054510 (2011). https://doi.org/10.1063/1.3632072
  5. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photon. 1, 449-458 (2007). https://doi.org/10.1038/nphoton.2007.141
  6. J. Y. Kim, M. K. Kwon, K. S. Lee, S. J. Park, S. H. Kim, and K. D. Lee, "Enhanced light extraction from GaN-based green light-emitting diode with photonic crystal," Appl. Phys. Lett. 91, 181109 (2007). https://doi.org/10.1063/1.2804005
  7. J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, "InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures," Appl. Phys. Lett. 84, 3885 (2004). https://doi.org/10.1063/1.1738934
  8. A. David, H. Benisty, and C. Weisbuch, "Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs," IEEE J. Display Technol. 3, 133-148 (2007). https://doi.org/10.1109/JDT.2007.896736
  9. J.-M. Lee, C. Huh, D.-J. Kim, and S.-J. Park, "Dry-etch damage and its recovery in InGaN/GaN multi-quantum-well light-emitting diodes," Semicond. Sci. Technol. 18, 530-534 (2003). https://doi.org/10.1088/0268-1242/18/6/323
  10. Q. Fan, S. Chevtchenko, X. Ni, S.-J. Cho, F. Yun, and H. Morkoc, "Reactive ion etch damage on GaN and its recovery," J. Vac. Sci. Technol. B 24, 1197-1201 (2006).
  11. S. Pereira, M. R. Correia, E. Pereira, K. P. O'Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, "Compositional pulling effects in InxGa1-xN/GaN layers: A combined depthresolved cathodoluminescence and Rutherford backscattering/ channeling study," Phys. Rev. B 64, 2053111 (2001).
  12. S. Sonderegger, E. Feltin, M. Merano, A. Crottini, J. F. Carlin, R. Sachot, B. Deveaud, N. Grandjean, and J. D. Ganiere, "High spatial resolution picosecond cathodoluminescence of InGaN quantum wells," Appl. Phys. Lett. 89, 232109-232111 (2006). https://doi.org/10.1063/1.2397562
  13. D. H. Long, I. K. Hwang, and S. W. Ryu, "Design optimization of photonic crystal structure for improved light extraction of GaN LED," IEEE J. Select. Topics Quantum Electron. 15, 1257-1263 (2009). https://doi.org/10.1109/JSTQE.2009.2014471
  14. B. Wang, Y. Jin, and S. He, "Effects of disorder in a photonic crystal on the extraction efficiency of a lightemitting diode," J. Appl. Phys. 106, 014508 (2009). https://doi.org/10.1063/1.3159650
  15. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals-Molding The Flow of Light, 2nd ed. (Princeton University Press, 2008), Chapter 5.
  16. J. S. Lee, J. Lee, S. Kim, and H. Jeon, "Fabrication of reflective GaN mesa sidewalls for the application to high extraction efficiency LEDs," Phys. Stat. Sol. C 4, 2625-2628 (2007). https://doi.org/10.1002/pssc.200674806
  17. H. G. Kim, M. G. Na, H. K. Kim, H. Y. Kim, J. H. Ryu, T. V. Cuong, and C.-H. Hong, "Effect of periodic deflector embedded in InGaN/GaN light emitting diode," Appl. Phys. Lett. 90, 261117 (2007). https://doi.org/10.1063/1.2752777
  18. Y.-T. Moon, D.-J. Kim, J.-S. Park, J.-T. Oh, J.-M. Lee, and S.-J. Park, "Recovery of dry-etch induced surface damage on Mg-doped GaN by NH3 ambient thermal annealing," J. Vac. Sci. Technol. B 22, 489-491 (2004). https://doi.org/10.1116/1.1645882
  19. D. Zhuang and J. H. Edgar, "Wet etching of GaN, AlN, and SiC: A review," Mater. Sci. Eng. R 48, 1-46 (2005). https://doi.org/10.1016/j.mser.2004.11.002
  20. H. M. Ng, N. G. Weimann, and A. Chowdhury, "GaN nanotip pyramids formed by anisotropic etching," J. Appl. Phys. 94, 650 (2003). https://doi.org/10.1063/1.1582233