• Title/Summary/Keyword: optical parameter

Search Result 522, Processing Time 0.025 seconds

Near-Infrared Photopolarimetry of Large Main Belt Asteroid - (4) Vesta

  • Bach, Yoonsoo P.;Ishiguro, Masateru;Takahashi, Jun;Naito, Hiroyuki;Kwon, Jungmi;Kuroda, Daisuke
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2021
  • The polarization degree as a function of phase angle (the Sun-target-observer's angle), so-called the polarimetric phase curves (PPC), have provided priceless information on asteroids' albedos since B. Lyot (1929). Succeeding experimental works in 1970s have confirmed the Umow law: There is a universal and strong correlation between the albedo and the PPC slope (slope of the tangential line at the zero of the PPC at phase angle ~ 20 degrees). Experiments in 1990s (ref [1]), on the other hand, have demonstrated that the negative branch of PPC is dependent on the size parameter (X ~ π * particle-size / wavelength), especially when X <~5. The change in particle size changed the minimum polarization degree, location of the minimum, and the width of the negative branch (called the inversion angle). From polarimetry[2] and spectroscopy[3], large asteroids are expected to be covered with fine (<~ 10 ㎛ size) particles due to the gravity. The size parameters are X ~ 30 at the optical wavelength (λ ~ 0.5 ㎛) and X ~ 10 in near-infrared (J, H, Ks bands; λ ~ 1.2-2.2 ㎛), if the representative particle size of 5 ㎛ is considered. Accordingly, the near-infrared polarimetry has a great potential to validate the idea in ref[1]. We conducted near-infrared photopolarimetry of the large asteroid (4) Vesta using the Nishiharima Infrared Camera (NIC) at Nishi-Harima Astronomical Observatory (NHAO). NIC allows simultaneous polarimetric measurements in J, H, and Ks bands, and thus the change of PPC is obtained for three different size parameters. As a result, we found a signature of the change in the negative branch in the PPC of asteroid (4) Vesta. We will introduce our observation and the results and give an interpretation of the regolith on Vesta.

  • PDF

Identification of Multiple Cancer Cell Lines from Microscopic Images via Deep Learning (심층 학습을 통한 암세포 광학영상 식별기법)

  • Park, Jinhyung;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.374-376
    • /
    • 2021
  • For the diagnosis of cancer-related diseases in clinical practice, pathological examination using biopsy is essential after basic diagnosis using imaging equipment. In order to proceed with such a biopsy, the assistance of an oncologist, clinical pathologist, etc. with specialized knowledge and the minimum required time are essential for confirmation. In recent years, research related to the establishment of a system capable of automatic classification of cancer cells using artificial intelligence is being actively conducted. However, previous studies show limitations in the type and accuracy of cells based on a limited algorithm. In this study, we propose a method to identify a total of 4 cancer cells through a convolutional neural network, a kind of deep learning. The optical images obtained through cell culture were learned through EfficientNet after performing pre-processing such as identification of the location of cells and image segmentation using OpenCV. The model used various hyper parameters based on EfficientNet, and trained InceptionV3 to compare and analyze the performance. As a result, cells were classified with a high accuracy of 96.8%, and this analysis method is expected to be helpful in confirming cancer.

  • PDF

Physicochemical characterization of two bulk fill composites at different depths

  • Guillermo Grazioli ;Carlos Enrique Cuevas-Suarez ;Leina Nakanishi ;Alejandro Francia;Rafael Ratto de Moraes
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.3
    • /
    • pp.39.1-39.12
    • /
    • 2021
  • Objectives: This study analyzed the physical-chemical behavior of 2 bulk fill resin composites (BFCs; Filtek Bulk Fill [FBF], and Tetric-N-Ceram Bulk Fill [TBF]) used in 2- and 4-mm increments and compared them with a conventional resin composite (Filtek Z250). Materials and Methods: Flexural strength and elastic modulus were evaluated by using a 3-point bending test. Knoop hardness was measured at depth areas 0-1, 1-2, 2-3, and 3-4 mm. The translucency parameter was measured using an optical spectrophotometer. Real-time polymerization kinetics was analyzed using Fourier transform infrared spectroscopy. Results: Flexural strength was similar among the materials, while TBF showed lower elastic modulus (Z250: 6.6 ± 1.3, FBF: 6.4 ± 0.9, TBF: 4.3 ± 1.3). The hardness of Z250 was similar only between 0-1 mm and 1-2 mm. Both BFCs had similar hardness until 2-3 mm, and showed significant decreases at 3-4 mm (FBF: 33.45 ± 1.95 at 0-1 mm to 23.19 ± 4.32 at 3-4 mm, TBF: 23.17 ± 2.51 at 0-1 mm to 15.11 ± 1.94 at 3-4 mm). The BFCs showed higher translucency than Z250. The polymerization kinetics of all the materials were similar at 2-mm increments. At 4-mm, only TBF had a similar degree of conversion compared with 2 mm. Conclusions: The BFCs tested had similar performance compared to the conventional composite when used in up to 2-mm increments. When the increment was thicker, the BFCs were properly polymerized only up to 3 mm.

A Study on the Determination of the Optimal Parameter for the Evaluation of the Effective Prestress Force on the Bonded Tendon (부착식 텐던의 유효 긴장력 평가를 위한 최적의 매개변수 결정에 관한 연구)

  • Jang, Jung Bum;Lee, Hong Pyo;Hwang, Kyeong Min;Song, Young Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.161-168
    • /
    • 2010
  • The bonded tendon was adopted to the reactor building of some operating nuclear power plants in Korea and the assessment of the effective prestress force on the bonded tendon is being issued as an important pending problem for continuous operation beyond their design life. The sensitivity analysis of various parameters was carried out to evaluate the effective prestress force using the system identification technique and the optimal parameters were determined for SI technique in this study. The 1/5 scaled post-tensioned concrete beams with the bonded tendon type were manufactured and in order to investigate the relationship of the natural frequency and the displacement to the effective prestress force, impact test, SIMO sine sweep test and bending test using the optical fiber sensor and the compact displacement transducer were carried out. As a result of tests, both the natural frequency and the displacement show the good relationship with the effective prestress force and both parameters are available for the SI technique to estimate the effective prestress force.

Design of a Bit-Serial Divider in GF(2$^{m}$ ) for Elliptic Curve Cryptosystem (타원곡선 암호시스템을 위한 GF(2$^{m}$ )상의 비트-시리얼 나눗셈기 설계)

  • 김창훈;홍춘표;김남식;권순학
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.12C
    • /
    • pp.1288-1298
    • /
    • 2002
  • To implement elliptic curve cryptosystem in GF(2$\^$m/) at high speed, a fast divider is required. Although bit-parallel architecture is well suited for high speed division operations, elliptic curve cryptosystem requires large m(at least 163) to support a sufficient security. In other words, since the bit-parallel architecture has an area complexity of 0(m$\^$m/), it is not suited for this application. In this paper, we propose a new serial-in serial-out systolic array for computing division operations in GF(2$\^$m/) using the standard basis representation. Based on a modified version of tile binary extended greatest common divisor algorithm, we obtain a new data dependence graph and design an efficient bit-serial systolic divider. The proposed divider has 0(m) time complexity and 0(m) area complexity. If input data come in continuously, the proposed divider can produce division results at a rate of one per m clock cycles, after an initial delay of 5m-2 cycles. Analysis shows that the proposed divider provides a significant reduction in both chip area and computational delay time compared to previously proposed systolic dividers with the same I/O format. Since the proposed divider can perform division operations at high speed with the reduced chip area, it is well suited for division circuit of elliptic curve cryptosystem. Furthermore, since the proposed architecture does not restrict the choice of irreducible polynomial, and has a unidirectional data flow and regularity, it provides a high flexibility and scalability with respect to the field size m.

Effect of Substrata Surface Energy on Light Scattering of a Low Loss Mirror (기판의 표면에너지가 반사경의 산란에 미치는 영향)

  • Lee, Beom-Sik;Yu, Yeon-Serk;Lee, Jae-Cheul;Hur, Deog-Jae;Cho, Hyun-Ju
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.452-460
    • /
    • 2007
  • Ultra-low loss ZERODUR and fused silica mirrors were manufactured and their light scattering characteristics were investigated. For this purpose, ZERODUR and fused silica substrates were super-polished by the bowl feed method. The surface roughness were 0.292 ${\AA}$ and 0.326 ${\AA}$ in rms for ZERODUR and fused silica, respectively. To obtain the high reflectivity, 22 thin film layers of $SiO_2$ and $Ta_2O_5$ were deposited by Ion Beam Sputtering. The measured light scattering of ZERODUR and fused silica mirror were 30.9 ppm and 4.6 ppm, respectively. This shows that the substrate surface roughness is not the only parameter which determines the light scattering of the mirror. In order to investigate the mechanism for additional light scattering of the ZERODUR mirror, the surface roughness of the mirror was measured by AFM and was found to be 2.3 times higher than that of the fused silica mirror. It is believed that there is some mismatch at the interface between the substrate and the first thin film layer which leads to the increased mirror surface roughness. To clarify this, the contact angle measurements were performed by SEO 300A, based on the Giriflaco-Good-Fowkes-Young method. The fused silica substrates with 0.46 ${\AA}$ in its physical surface roughness shows lower contact angle than that of the ZERODUR substrate with 0.31 ${\AA}$. This indicates that the thin film surface roughness is determined by not only its surface roughness but also the surface energy of the substrate, which depends on the chemical composition or crystalline orientation of the materials. The surface energy of each substrate was calculated from a contact angle measurement, and it shows that the higher the surface energy of the substrate, the better the surface roughness of the thin film.

Modern Paper Quality Control

  • Olavi Komppa
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.06a
    • /
    • pp.16-23
    • /
    • 2000
  • The increasing functional needs of top-quality printing papers and packaging paperboards, and especially the rapid developments in electronic printing processes and various computer printers during past few years, set new targets and requirements for modern paper quality. Most of these paper grades of today have relatively high filler content, are moderately or heavily calendered , and have many coating layers for the best appearance and performance. In practice, this means that many of the traditional quality assurance methods, mostly designed to measure papers made of pure. native pulp only, can not reliably (or at all) be used to analyze or rank the quality of modern papers. Hence, introduction of new measurement techniques is necessary to assure and further develop the paper quality today and in the future. Paper formation , i.e. small scale (millimeter scale) variation of basis weight, is the most important quality parameter of paper-making due to its influence on practically all the other quality properties of paper. The ideal paper would be completely uniform so that the basis weight of each small point (area) measured would be the same. In practice, of course, this is not possible because there always exists relatively large local variations in paper. However, these small scale basis weight variations are the major reason for many other quality problems, including calender blacking uneven coating result, uneven printing result, etc. The traditionally used visual inspection or optical measurement of the paper does not give us a reliable understanding of the material variations in the paper because in modern paper making process the optical behavior of paper is strongly affected by using e.g. fillers, dye or coating colors. Futhermore, the opacity (optical density) of the paper is changed at different process stages like wet pressing and calendering. The greatest advantage of using beta transmission method to measure paper formation is that it can be very reliably calibrated to measure true basis weight variation of all kinds of paper and board, independently on sample basis weight or paper grade. This gives us the possibility to measure, compare and judge papers made of different raw materials, different color, or even to measure heavily calendered, coated or printed papers. Scientific research of paper physics has shown that the orientation of the top layer (paper surface) fibers of the sheet paly the key role in paper curling and cockling , causing the typical practical problems (paper jam) with modern fax and copy machines, electronic printing , etc. On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard . Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and coclking tendency, and provides the necessary information to finetune, the manufacturing process for optimum quality. many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, bing beyond the measurement range of the traditional instruments or resulting invonveniently long measuring time per sample . The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, nonleaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layer of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow in well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings ! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly ass planned (having even small measurement error or malfunction ), the process control will set the machine to operate away from the optimum , resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.

Crystal Growth of $Y_3Al_5O_{12}$ and Nd : $Y_3Al_5O_{12}$ by Czochralski. Technique (융액인상법에 의한 $Y_3Al_5O_{12}$및 Nd : $Y_3Al_5O_{12}$ 단결정육성)

  • Yu, Yeong-Mun;Lee, Yeong-Guk;Park, Ro-Hak
    • Korean Journal of Crystallography
    • /
    • v.5 no.2
    • /
    • pp.51-66
    • /
    • 1994
  • Y3Al5O2 and Nd: Y3Al5012 single crystals were grown by Czochralskl technique. The effectt of pulling rate rotation rate, and doping level of Nd3+ ion on the crystal quality were studied Various types of defects were analysed by photo-elastic effect and chemical etching method Finally, spectroscopic and laser poputies of grown crystal were measured. Optirmum pulling rate for good quality was dependant on the doping level of Nd3+ ion. It was found that the suitable pulling rates for pure Y3Al5O12 for 3.0∼3.5 a/o Nd3+ ion doped Y3Al5012 and for more than 40 a/o Nd3+ ion doped Y3Al5012 were 2∼4mm/hr, 0.6∼0.5mm/hr, and less than 0.4mm/hr respectively. Solid-liquid interface was convex at the rotation rate of 27∼60rpm, and concave at the rotation rate of 80∼100rpm. Growth axis was confired to <111> direction and lattice parameter was measured to 12.017A. Core (211) facets,striations, inclusions of metal particles, dislocations and optical inhonngeneities were detected. Four level laser transition of Nd3+ion in YIAls012 single crystal were identified by the spectroscopic measurements. Laser rod with tam diameter and 63mm length was fabricated from grown Nd3+ Y3Al5012 sin91e crystals. 1.8lJ of lasing threshould and 0.49% of soope efficiency were measured by the Pulsed laser action.

  • PDF

Electrical Behavior of the Circuit Screen-printed on Polyimide Substrate with Infrared Radiation Sintering Energy Source (열소결로 제작된 유연기판 인쇄회로의 전기적 거동)

  • Kim, Sang-Woo;Gam, Dong-Gun;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.71-76
    • /
    • 2017
  • The electrical behavior and flexibility of the screen printed Ag circuits were investigated with infrared radiation sintering times and sintering temperatures. Electrical resistivity and radio frequency characteristics were evaluated by using the 4 point probe measurement and the network analyzer by using cascade's probe system, respectively. Electrical resistivity and radio frequency characteristics means that the direct current resistance and signal transmission properties of the printed Ag circuit. Flexibility of the screen printed Ag circuit was evaluated by measuring of electrical behavior during IPC sliding test. Failure mode of the Ag printed circuits was observed by using field emission scanning electron microscope and optical microscope. Electrical resistivity of the Ag circuits screen printed on Pl substrate was rapidly decreased with increasing sintering temperature and durations. The lowest electrical resistivity of Ag printed circuit was up to $3.8{\mu}{\Omega}{\cdot}cm$ at $250^{\circ}C$ for 45 min. The crack length arisen within the printed Ag circuit after $10{\times}10^4$ sliding numbers was 10 times longer than that of after $2.5{\times}10^4$ sliding numbers. Measured insertion loss and calculated insertion loss were in good agreements each other. Insertion loss of the printed Ag circuit was increased with increasing the number of sliding cycle.

A Study on Iris Image Restoration Based on Focus Value of Iris Image (홍채 영상 초점 값에 기반한 홍채 영상 복원 연구)

  • Kang Byung-Jun;Park Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.30-39
    • /
    • 2006
  • Iris recognition is that identifies a user based on the unique iris texture patterns which has the functionalities of dilating or contracting pupil region. Iris recognition systems extract the iris pattern in iris image captured by iris recognition camera. Therefore performance of iris recognition is affected by the quality of iris image which includes iris pattern. If iris image is blurred, iris pattern is transformed. It causes FRR(False Rejection Error) to be increased. Optical defocusing is the main factor to make blurred iris images. In conventional iris recognition camera, they use two kinds of focusing methods such as lilted and auto-focusing method. In case of fixed focusing method, the users should repeatedly align their eyes in DOF(Depth of Field), while the iris recognition system acquires good focused is image. Therefore it can give much inconvenience to the users. In case of auto-focusing method, the iris recognition camera moves focus lens with auto-focusing algorithm for capturing the best focused image. However, that needs additional H/W equipment such as distance measuring sensor between users and camera lens, and motor to move focus lens. Therefore the size and cost of iris recognition camera are increased and this kind of camera cannot be used for small sized mobile device. To overcome those problems, we propose method to increase DOF by iris image restoration algorithm based on focus value of iris image. When we tested our proposed algorithm with BM-ET100 made by Panasonic, we could increase operation range from 48-53cm to 46-56cm.